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ABSTRACT

This work presents an algorithm to solve a two-dimensional weighted-region

problem that requires finding the least-cost path between two points located on a

map of homogeneous-cost regions. Such regions have a constant cost rate per unit

distance accrued by paths passing through them. Conventional graph search

applies standard search strategies to graphs whose links represent the only

possible paths. We use Snell's law as a local-optimality criterion to create

corresponding graphs for the weighted-region problem; the nodes in our graphs

represent areal subdivisions of the physical environment. The performance of our

Snell's-law-based algorithm is compared to that of a dynamic-programming,

wavefront-propagation technique. Test results show average-case superiority of

the Snell's-law-based algorithm, as measured by time, space and solution-path

cost. We present a criterion to predict the time for the wavefront-propagation

algorithm and the Snell's-law algorithm to solve problems; this allows the

selection of the fastest algorithm. We also develop improvements to the

wavefront-propagation algorithm that decrease its average-case time requirements

and we prove properties of Snell's law when applied to the weighted-region

problem.
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I. INTRODUCTION

A. SPATIAL REASONING

Robotics has been characterized as the field concerned with the "intelligent

connection of perception to action". [Ref. 1]. A key to establishing the

connection between computers and human-like activity involves spatial reasoning;

reasoning about objects based on descriptions of their spatial properties such as

location and shape [Ref. 21. As an example, suppose that a robot manipulator is

used to take parts from one bin and put the parts into another bin. Before this

task can be accomplished, the robot must "know" the location, size and shape of

both bins as well as how to move its arm between bins.

Spatial reasoning problems can be varied in nature; there does not seem to be

a single spatial reasoning problem that represents the entire set of such problems.

One class of spatial reasoning problems that has received much attention is path

planning. That is, given a map of the physical environment that provides the

location, shape and size of distinct regions and associates a cost per unit distance

with moving through each such region, find the least-cost path between two given

points on the map. Clearly, if a robot is to move its arm (between bins for

example), it must be able to solve an instance of the path-planning problem.

Optimal-cost route planning is not a new problem area. There have been

many successful search techniques developed, particularly in the operations

research field, to solve different instances of path-planning problems. Search is



the process of exploring different alternatives that lead to or constitute solutions.

Normally, the techniques tacitly rely on a strong assumption: a finite graph that

exhaustively lists every possible path in the environment is either available or can

be generated. This implies that there is a finite number of turns that can be

taken at every branch point (i.e., each node in the graph has a finite branching

factor). This assumption is reasonable for many path-planning domains. As an

example, when the problem is to plan a roadway route between two locations,

then a graph that represents the road network connecting the two locations is an

accurate problem representation. However, a finite graph where graph nodes

represent locations and graph links define avenues for movement between

locations, does not exist for all path-planning problems.

The type of graph structure discussed above is an example of a problem

representation that facilitates a path-oriented approach [Ref. 2] to the path-

planning problem. To illustrate the inadequacies of the path-oriented approach,

suppose that an optimal-cost route between two locations is desired and that the

locations are connected by a road network. If the agent (i.e., some entity capable

of independant motion) for which the path is to be planned is not restricted to

road-only travel, then the road network does not exhaustively represent all

possible paths between the two locations. If the agent happens to be a human on

foot. a roadway may not be a desirable terrain feature to include on the path.

For example. if the human wishes to avoid detection. a wooded area wouid le

preferable to an open road.

In general. a solution path appropriate for a highly-mobile agent includes path

segments that cross several different terrain features. Again, using the example of

10



a walking human, the most desirable paths often combine some roadway and off-

road portions. Such solution paths do not seem to come from selecting one from a

finite number of possible paths through a graph. If a road is considered to be a

series of connected line segments, then due to the existence of real numbers, there

exists an uncountably infinite number of points where a path could exit the road

to begin an off-road path segment. Thus, there exists an uncountably infinite

number of possible paths involving on-road and off-road path segments. Clearly.

a finite graph where one node has an infinite number of neighboring nodes is self-

contradicting.

But, even though there exists an infinite number of possible paths comprised

of on-road and off-road path segments, the differences between all but a finite

number of them cannot be represented on any machine that has finite precision.

V So, a finite static graph that reasonably closely models all possible paths has to be

large. The alternative is to decrease the resolution (precision) of the

representation, resulting in solutions of decreased accuracy. In many domains, the

type of solution that can be achieved based on simplified approximate problem

representations is satisfactory. However, in some instances of the path-planning

problem, where path cost is measured in terms of exposure to danger for example,

sacrificing optimality for computational simplicity is not a good strategy.

Another more promising method of solving path-planning problems in

domains where the path-oriented approach is inadequate involves shape-oriented

reasoning [Ref 2]. Instead of relying on the search of a large graph that includes

links for all possible paths between two locations, reason about the spatial

relations and properties of the terrain features themselves (as represented by
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regions having uniform properties). Shape-oriented spatial reasoning can be used

to create a graph that represents areal combinations of different terrain features.

In this work, we present methods of creating and searching such spatially-oriented

graphs that allow solutions to the path-planning problem.

B. PROBLEM DEFINITION AND BASIC ASSUMPTIONS

The path-planning problem that we solve has been named the weighted- region

problem [Ref. 3] and requires finding the least-cost path between two given points,

a start and a goal that both lie in the same Cartesian plane. We assume, as a

given, the existence of a area-cost map that is large enough to include the start,

the goal, and the least-cost path between them. The area-cost map is comprised of

homogeneous-coat regions, described as non-intersecting polygons such that each

polygon defines an area of equal coat rate. A cost rate is a generic measure of cost

per unit distance, generic in the sense that the unit of measure itself is irrelevant

and could be, for example, time, exposure to danger, energy required, or a similar

unit of measure. Cost rates are defined only in terms of location (i.e., not in terms

of heading or time) and for a specific agent. By agent, we indicate some entity

capable of independent motion over the area represented by the area-cost map.

There is a single cost rate associated with each homogeneous-cost region.

A path is a series of connected line segments or path segments, that begins at

the start and ends at the goal. There is one path segment on a path for each

portion of the path that is inside a single homogeneous-cost region. Thus, a path

is comprised of path segments such that there is one path segment endpoint at

the start, one path segment endpoint at the goal, and one path segment endpoint

12
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at each point where the path intersects a boundary of a homogeneous-cost region.

The cost of a path can be calculated by summing the costs of each of its path

segments. Since each path segment goes through a single homogeneous-cost

region, a single cost rate can be associated with each path segment. The cost of a

path segment is equal to the cost rate for that segment multiplied by the length of

the segment.

Let PSG be the set of all simple, start-to-goal paths for a specific instance of a

least-cost-path problem. For each piEPSG, let pi be the locus of points (z,y) such

that z = hi(s) and y = gi(a). Let C(z,y) be a piecewise constant function such

that TC = C(z,y) is a unique cost rate (per unit distance) associated with

coordinates (z,y) on the area-cost map. Then, the least-cost-path problem can be

expressed as:

minEp. f C(h,(.),g(a)) do

Note that this formulation represents a problem in the calculus of variations

[Ref. 41. In this work, we exploit the nature of the problem itself to devise a

solution technique that is based on less complex mathematical models.

Specifically, we define a local optimality criterion that allows the computation of

piecewise-linear paths from the start to the goal that have locally optimal cost,

locally optimal among the set of all start-to-goal paths that intersect a particular

set of homogeneous-cost region boundaries. The problem then reduces to finding

the single least-cost path from the set of all locally optimal-cost paths. Let L be

the set of all such locally optimal-cost paths such that lieL and that each 1, is

comprised of n, path segments. denoted ps, where j I.nJ). A unique cost.

0313 .
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Cj can be associated with each such path segment. Let the Euclidean distance

along path segment ps, be denoted d,. Given this formulation, the weighted-

region problem becomes:
nj

minl,,L E el
j=1

C. THESIS ORGANIZATION

In the following chapter, we examine solution techniques for some related

problems, beginning with general graph search strategies. The chapter includes a

brief discussion of the wavefront-propagation technique as a solution method for

the weighted-region problem. Because wavefront propagation is a widely used

method, Chapter IT[ is devoted to a detailed discussion of the method as well as

some modifications that can enhance its performance.

In Chapter II, the survey of related work also includes a discussion of a

weighted-region problem solution technique that relies on Snell's law, commonly

used in optics. Chapter IV presents a mathematical analysis of the application of

Snell's law to the weighted-region problem. The properties exhibited by Snell's

law when applied to the weighted-region problem that are developed in Chapter

IV provide the foundation for the Snell's-law-based algorithm developed in

Chapter V. A prototype version of the algorithm has been implemented. In

Chapter VI. we present performance comparisons of the Snell's-law-based

algorithm and the wavefront-propagation technique. This chapter provides the

data that is the basis of the conclusions presented in Chapter VII.

14



UI. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

Recall that the weighted-region problem requires finding the optimal-cost path

between two known points given an appropriate area-cost map. The weighted-

region problem is related to several other problems in the fields of computer

science and operations research. Solving the weighted-region problem requires

search. There are many search strategies that can be applied to the problem. Each

strategy has unique characteristics that determine its suitability. In Section I.B,

we discuss the characteristics of well-known search strategies that have been

applied to the weighted-region problem.

Work completed in the artificial intelligence field has demonstrated that

determining the most suitable search strategy for a particular problem is but a

single step towards constructing a problem solving system. Many other aspects are

involved. Problem representation, discussed in Section II.C, is one important

aspect. In Section II.D we discuss these issues in the context of problem solving

systems created by artificial intelligence researchers.

The discussions presented in Sections II.B and II.D develop basic principles for

constructing problem solving systems that rely on search. Section II.E exemplifies

the application of these principles to the simplest instance of the weighted-region

problem. This restricted version of the problem requires finding optimal-cost

paths through an environment consisting only of obstacle areas (those areas

15
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having infinite costs associated with passing through them) and traversable areas

(those areas having finite constant costs associated with passing through them).

Section H.F presents completed work that has been directed towards solving

the general-case weighted-region problem. Each technique has its own

characteristic advantages and disadvantages. These characteristics are developed

leading up to Section H.G, the summary.

B. WEAK METHODS OF SEARCH

Search is required whenever there is no closed-form solution for the problem at

hand. That is, if the best that can be done when presented with a problem is to

make a plausible guess at its solution, search is required to solve the problem. An

oversimplification of this statement is that search is required whenever a complex

problem having many plausible alternative solutions, must be optimally solved.

Thus, search is a fundamental requirement in producing solutions for many

important problems. Because search problems are ubiquitous, many different

search strategies have been developed and are well understood. These strategies

are often called weak methods [Ref. 5]. The term weak method is not meant to

reflect problem solving power. Rather, the classification indicates that the

method does not have a strong reliance on a particular aspect of a problem, the

problem structure and is thus generally applicable to a wide range of problems.

At least three requirements must be met by every problem-solving system

before a weak method can be successfully applied. First, there must be some way

of describing the problem and its subparts. That is. there must be a problem

representation that describes every object or state that is involved in solving the

16



problem. Secondly, there must be some way of specifying motion, or

transformations, from one state to another. Operators are state modification rules

that specify how a state can be transformed and describe states resulting from

transformations. Finally, there must be some method of ordering operator

application. A control strategy establishes a precedence among the operators.

Constructing efficient operators and problem representations are important

issues that are discussed in Section II.C. In this section, we focus on control

strategies. To facilitate the discussion, we assume that the problem representation

is a graph consisting of nodes and links. Each node represents a state. There is a

link in the graph between each two states when they are related by a single

application of an operator. Using this graph structure allows the explanation of

basic terminology.

. Node A is a parent of node B if there is a directed link from A to B. (Thus,

the state represented by A can be transformed into the state represented by B by

a single application of an operator.) In this case, node B is a child of node A. If

there is a chain of links leading from node A to node B then node A is an ancestor

of node B and node B is a successor of node A. Two or more child nodes that

have the same parent node are siblings. A fundamental step in graph search is

node generation. A node is generated when it has been derived by traversing the

link from its parent node. Once a node has been generated. the parent of that

node has been explored. Expanding a node requires generating all of the node's

children. The minimum number of links from a node back to the start is the

depth of the node.

17



Weak methods can be characterized by the type of solutions they produce.

The solution type is normally dictated by the task at hand. The task can be an

optimizing, satisficing or semi-optimizing task [Ref. 61. If the task requires finding

the exact most desirable solution, then it is an optimizing task. The task is

satisficing when solutions that are "good enough" [Ref. 7] are acceptable.

Satisficing tasks usually involve the use of heurietics, or rules of thumb which

serve to lessen the search effort. Here, optimal solutions are not guaranteed.

Often, the first solution found during search is acceptable for a satisficing task.

When the task is to find a solution that is within a specified tolerance of the exact

optimal solution, the task is semi-optimizing. The latter type of task appears

frequently for several reasons. First. a task can be semi-optimizing because the

effort required to improve a solution that is close to optimal is not justified by the

amount of improvement. Secondly, a task can be semi-optimizing due to

numerical issues such as precision and accuracy. If the exact optimal solution is.

for example, 7r, no machine currently available can exactly display the number.

The weighted-region problem is a semi-optimizing task for both of these reasons.

As such, a search strategy suitable for the weighted-region problem must support

semi-optimizing tasks. Normally, this implies that the strategy be capable of

providing optimal solutions, given an unlimited amount of resources.

Weak -methods can also be characterized by the nature of their control

strategy. A control strategy is sytematic if it is both complete and non- redundant

[Ref. 6,8]. Completeness implies that a solution, if one exists, will not be

overlooked. Non-redundancy implies that the search will not repeat itself by

exploring any alternative more than once. Control strategies that do not meet

18 -. A



these requirements are non-systematie. Clearly, a control strategy suitable for the.weighted-region problem must be systematic. Since the task is semi-optimizing,

the strategy must be complete. Non-redundancy ensures only the most

rudimentary form of efficiency.

Thus, we desire a weak method that is systematic and appropriate for a semi-

optimizing task. Several weak methods have been applied to the weighted-region

problem. Prior to discussing these methods, we discuss the primitive search

strategies that form the basis for the more advanced weak methods of search.

(Note that, unless otherwise stated, our discussions of the following search

strategies assume that the first solution a strategy finds is the solution that the

strategy returns.)

The two simplest systematic strategies for conducting a graph search are

~ depth-first eearch and breadth-first search [Ref. 61. To illustrate the differences in

these strategies, suppose that node N has two child nodes, C1 and C2. Assume

that node N has been explored. When using a depth-first strategy, if CI is

selected for expansion before C2, then all of the successors of Cl will be explored

before C2. Thus, depth-first search choses for expansion first those nodes that

increase search depth in the graph. Breadth-first search uses an opposite

philosophy. All nodes at the same depth in the graph are expanded before the

search moves to a greater depth in the graph. Thus, all siblings of node N would

be explored before either CI or C1 in the above example.

When depth-first search reaches a node that has no children, it must backtrack

by exploring sibling nodes. Thus, if node CI is selected for expansion but CI has

no children, a depth-first strategy would explore node C2 next (in a depth-first

19



manner). Since graphs do not have infinite branching factors, there is no

breadth-first analogy to backtracking. However, both strategies are subject to

cycling. When there is more than one path to a node (including the case where a

node is a successor of itself) either strategy can cycle, or repeat the search effort

by generating the same node more than one time. To prevent such occurrences,

both strategies rely on maintaining two sets of nodes called Open and Closed [Ref.

8]. Open is the set of all nodes that have been generated but not yet expanded.

Closed is the set of all nodes that have been expanded. Cycling is prevented by

inspecting each node selected for expansion to ensure that it is not already in the

Closed set. Generally, when the node is a member of Closed, it need not be

expanded a second time and can simply be removed from the Open set.

Whenever either strategy returns the first solution that they find, they act as

satisficing techniques. Heuristics can be added to either strategy to ensure that

optimal solutions are discovered. Optimality can also be ensured by non-heuristic

means. Either strategy can be used to conduct an exhaustive search of the graph

so that the entire graph is searched. In an exhaustive search, all solutions will be

found and the single best solution can be returned as optimal.

1. Uniform-Cost Search

Uniform-cost search is a type of breadth-first search that is suitable for

optimizing tasks when different costs are associated with traversing links. Recall

that breadth-first search exhaustively explores a graph at one level of depth before

progressing to the next level. Uniform-cost search employs the same strategy

except that the graph is explored in equal levels of cost rather than equal levels of

depth. To effect the change, only a small modification is required to a procedural

20



definition of breadth-first search. Instead of directly adding all children of a

newly expanded node to the Open list, the children are first sorted into a new list,

ordered by increasing cost to reach the child from the start node. The new list is

then merge-sorted into the Open list. Cost information must be available for each

node on the Open list to complete the merge sort. Thus, it is most convenient to

require the elements of Open to be two-tuples of the form (Cost,Node).

The merge sort maintains Open so that the least-cost element is always the

first element. Thus, the graph is searched by always expanding the least expensive

path found so far. Clearly, when the goal node is the first element on Open, it

represents the least expensive goal path that has yet been found and it can be

returned as the optimal-cost solution. A procedural definition of uniform-cost

search is presented in Table 1. 4

Uniform-cost search has also been called a branch- and- bound strategy since

the name is descriptive of the strategy's behavior. The node chosen for expansion

always represents a lower bound on the cost to reach the goal. If that node is not

the goal, the strategy branches to some other, possibly unrelated, node on the

next expansion. The branch-and-bound name is often used for this strategy in

the artificial intelligence community. Branch-and-bound is also an archetypal

search strategy used in operations research. However, the operations research

version of branch-and-bound is a different algorithm, similar to the A' strategy %

(discussed in Section 1I.B.3 below). Uniform-cost search has also been called

Dijkstra's algorithm after E. Dijkstra who first developed the strategy in 1956

[Ref. 9].
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TABLE I
UNIFORM-COST SEARCH

Uniform cost (Closed,Open){
If Open is empty, stop, announcing no solution exists
Otherwise

{
Split Open into 2 parts, Node which is the first element

of Open and RestOpen which is Open with the first
element removed.

If Node is the goal and all other nodes having lower cost
have been expanded, stop, announcing success

Otherwise
f
Expand Node
Create UpdatedClosed by adding Node to Closed
If Node has no successors

f
Uniform cost (UpdatedClosed.RestOpen)}

Otherwise{
Create the list SortedChildren which contains each

child of Node, not already on Closed or Open, 4--
sorted by path cost from the start.

Create UpdatedOpen by merging RestOpen and
SortedChildren.

Uniform cost(UpdatedClosed,UpdatedOpen)}
}

}
}

Uniform-cost search is a strategy that rests on the dynamic programming

paradigm. Clearly. the first path found to any node constitutes the optimal path

to that node. Thus, in the process of finding the optimal start-to-goal path, the

optimal path to every node (when the secondary paths have cost less than the

solution cost) expanded along the way is also found. This is analogous to the
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dynamic programming principle of solving all subproblems in order to solve the

overall problem.

Uniform-cost search is classified as an uninformed (or "blind") strategy. (In

fact, when the cost to reach any child node from its parent node is constant,

uniform-cost search reduces to breadth-first search.) In the context of a graph-

structured problem representation, uninformed strategies are those that have no

notion of the location of the goal until it is found. That is, in uninformed

strategies, the order of node expansion is not affected by the location of the goal

node. Clearly, depth-first, breadth-first and exhaustive search strategies are also

uninformed. Efficiency considerations normally imply that uninformed strategies

are impractical for application to problems represented by large graph structures.

However, the methods are important. They form the basis for more sophisticated,

informed control strategies. The weak methods presented in the following three

sections are all informed strategies.

2. Best-First Search

Best-first search is the basic informed strategy. The technique relies on

heuristics that evaluate newly generated nodes in terms of their estimated

proximity to the goal node. That is, if nodes A and B are newly generated and

node A seems closer to the goal than B, the heuristic component of the algorithm

will rate A as more promising than B and A will be expanded before B.

Best-first search provides a way to combine breadth-first and depth-first

search. Procedurally, best-first search is a variant of the uniform-cost strategy.

Exactly the same algorithm may be used except that a modification must be
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made to the method of evaluating the cost associated with each node. Instead of

maintaining a "running" account of the cost to reach a node, a heuristic

component that evaluates the "closeness" of the node to the goal is required. In

the simple version of best-first search that we define here, the accrued cost to

reach a node is unimportant. (We note that more sophisticated versions of best-

first search rely on a "composite" evaluation at each node that includes a

"running" account component and a "closeness" component. A* search, discussed

below, is such a best-first strategy.) Once the cost evaluation for each node has

been established, the nodes are again ordered in terms of increasing cost and

merged into the Open list. Thus, the node that seems closest to the goal is always

selected as the next node to expand. Again, the merge-sorting requirement

dictates that elements of Open are (Cost,Node)-tuples. A procedural definition of

best-first search is provided in Table 2.

The accuracy of the heuristic evaluation function has a great effect on the

efficiency of best-first search. If the estimator is perfect, always returning the

exact cost to reach the goal from any node, then there is no search involved in the

problem. When using a perfect estimator, one child of each node expanded must

be on the solution path and that child must be closer to the goal than the parent.

Thus, no node not on the optimal path is ever expanded. Perfect estimators allow

best-first search to behave as if it were depth-first search that always happens to

choose the correct node for expansion. However, problems that require search (i.e.,

do not have closed form solutions) do not have perfect estimators. Normally,

best-first search alternates between breadth-first and depth-first exploration of a

graph.
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TABLE 2

BEST-FIRST SEARCH

Best first(Closed.Open)

If Open is empty, stop, announcing no solution exists
Otherwise

Split Open into 2 parts, Node which is the first element
of Open and RestOpen which is Open with the first
element removed.

If Node is the goal, stop, announcing success

Otherwise

Expand Node
Create UpdatedClosed by adding Node to Closed

If Node has no successors

Best first (UpdatedClosed.RestOpen)}
Otherwise{

Create the list SortedChildren which contains each
child of Node, not already on Closed or Open,
sorted in order of increasing estimates to reach
the goal from the child.

Create UpdatedOpen by merging RestOpen and
SortedChildren.

Best first (UpdatedClosed,UpdatedOpen)}
}

}
.r

The heuristic estimator also determines the type of solution returned by

our simple version of best-first search. If the 'stimator is perfect. optimal soiutions

are provided. Without perfect estimators. our best-tirst. -earch is not guaranteed

to provide optimal solutions. Overestimating the cost to reach the goal from a

node on the optimal solution path will cause the expansion of that node to be

delayed. Some other path leading to the goal can be -ound during the delay if the
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overestimate is sufficiently high. Similarly, a heuristic component that

underestimates remaining cost can lead to less than optimal solutions. In this

case, the problem stems from ignoring accrued cost to reach a node. As an

example, suppose that node N is expanded, yielding children C, and C2, both of

which have the goal node, G, as a child. Let the cost of the N-C 1 link be 10

units while the cost of the N-C 2 link is 20 units. Let the cost of the C 1- G link

be 15 units and the cost of the C2 -G link be 10 units. Assume that the heuristic

component underestimates the remaining cost from both C1 and C , but is

accurate enough to prefer C 2 to C1 since the former is closer to the goal. The path

through C 2 will be explored first, yielding a solution having a cost of 30 units.

The path through node C1 is better, having a cost of 25 units. but that path is

not explored.

Our simple best-first search is appropriate for satisficing tasks when the

size of the problem representation requires an informed strategy and there is a

good estimator available. The strategy is not suitable for optimizing or semi-

optimizing tasks. However, our simple best-first search can be modified to provide

optimal solutions. The modification is presented in the next section.

3. The A* Search Strategy

A* search [Ref. 101 is the culmination of all the strategies that have thus

far been presented. The strategy combines the informed nature of best-first

search with the optimizing character of uniform-cost search. As a result, whenever

a good estimator is available, A* search is the leading candidate for the best

strategy to apply to optimizing or semi-optimizing tasks.
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The A* strategy relies on maintaining a composite cost evaluation for each

node stored on the Open list. The composite is the sum of the known cost to reach

the node (as in uniform-cost search) and a heuristic lower-bound underestimate of

the cost to reach the goal from that node (similar to the evaluation used by our

best-first search). The normal names given to these costs are f(N) for the

composite cost at node N, g(N) for the known cost to reach node N and h(N) for

the lower-bound heuristic evaluation component. Thus, f(N)-g(N)+h(N) in this

terminology. A* search overcomes the inefficiency of uniform-cost search by using

the lower-bound component and changes the satisficing nature of best first search

to optimizing through the known-cost component.

The above is an oversimplification. A* search cannot provide an optimal

solution unless the lower-bound component is guaranteed to underestimate

C remaining cost. That is, the lower-bound component must provide an evaluation

that is less than or equal to the actual remaining cost to reach the goal. In

general, if the lower-bound component overestimates remaining cost, a node on

the optimal path can be overlooked (as in the case of best-first search). However,

using a lower-bound component that underestimates remaining cost guarantees

that A* returns optimal solutions.

The amount that the lower-bound function underestimates true remaining

cost affects the work required by A' ,o reach a solution. The closer the evaluator

comes to perfection, the less work required by A*. Altering the values returned

by either the known-cost or lower-bound function changes the behavior of the A*

algorithm. These behavioral changes are summarized in Table 3.
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TABLE 3
ALTERING A* BEHAVIOR

A* O ptimality
known cost lower bound Behavior Guaranteed
true cost true cost depth first, no backtracking yes
true cost underestimate yes
true cost overestimate no
true cost 0 uniform-cost search yes
0 0 random no
0 any estimate simple best-first search no

A* search, like the other strategies presented, requires use of both the

Closed and Open lists to prevent cycling. However, there is an important

difference in how the lists are maintained when a duplicate node is generated (i.e.,

a node already on Closed). Unlike uniform-cost search, A* may not generate the

optimal path to an intermediate node the first time it finds a path to that node.

This is due to the underestimate provided by the lower-bound component. The

evaluation is based on remaining cost to reach the goal node, not on remaining

cost to any intermediate node. As an example, suppose that nodes N1 and N 2

both have a single child, C, and that the known cost for N, equals the known cost

for N.. Let the actual cost from N, to C be 5 units while the cost from N 2 to C is

only 3 units. If the lower-bound evaluation for N, is less than the lower-bound

evaluation for N2, then the path reaching C through N will be generated prior to

the less expensive path through N 2.

To overcome this problem. care must be taken when the same child node is

generated by different parent nodes. If there is a newly generated node, N. such

that the new known cost for N equals Gi and N is already on the Open list with

an old known-cost value of G2. then comparing G1 and G2 determines the correct

.4. .,
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action. If G2 G1, then the newly generated instance of N can be discarded. If

the converse is true, the new instance of N must replace the old instance of N on

Open so that the least-cost ancestry of N is recorded. If the replacement does not

occur, the effect of the incorrect known-cost value for N is propagated to all

successors of N, which could cause the optimal solution path to be overlooked.

The situation is more complicated if the newly generated node already appears on

the Closed list.

When a newly generated node, N, is a duplicate of an explored node stored

on the Closed list, the known-cost functions for both occurrences of N must again

be compared. Again, let the new instance of N be such that the new known-cost

value for N is G1 while the old instance of N has a known-cost value of G2. If G2

< G1, then no actions are required and the new instance of N can simply be

* discarded. If G1 < G2, the ancestry records of the instance of N appearing on

Closed must be updated. Moreover, N can be an ancestor of other nodes

appearing on either Closed or Open. The cost difference for the known-cost value

at the new instance of N must be propagated to each of the previously generated

successors appearing on either list.

There are two options to update the known-cost values for the successor

nodes. First. the procedure outlined above may be followed, finding each

successor and updating its known-cost value and ancestry records. This option is

advantageous if the cost of generating successor nodes is relatively high. The

second option is to simply remove the instance of the duplicate N from Closed

and insert the new instance of N on the Open list as normal. This option avoids

S tracing through the ancestry records of nodes on Open and Closed at the cost of
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regenerating some successor nodes. In many cases, the cost of expanding a node is

low, particularly when a graph structured problem representation is used. Thus.

our procedural definition of the A* strategy employs the latter option. (We note

that "Closed" is not the best name for the list of expanded nodes since the nodes

may be regenerated. However, we use this terminology for historical reasons.)

The requirement to compare known-cost values for duplicate generations of

the same node means that these values must be available. Thus, each element of

Open must now be a tuple of the form (f(N),g(N),N) which is a short notation for

(composite evaluation, known-cost value, lower-bound evaluation). The f(N) (i.e.,

composite evaluation) values are required to sort the Open list. The Closed list

must now be comprised of elements having the form (g(N),N). A procedural

definition of A* is provided in Table 4.

4. Epsilon-Admissible A* Search

A* search as described in the preceding section is an appropriate strategy

for optimizing tasks. However, there is often a significant overhead involved in

computing and maintaining heuristic evaluation (i.e.. the lower-bound h(N)

values). A natural question arises: is there a way to improve performance of an

A* strategy while accepting only a bounded decrease in solution quality? An

algorithm founded on this premise is well suited to the many interesting problems

that have semi-optimizing requirements.

Epsilon-admissible speedup A*, normally written A. *, is a semi-optimizing

strategy that guarantees its solution has cost less than or equal to (1 +c) times

the cost of the exact optimal solution [Ref. 6!. The value of F can be specified for
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-TABI E4
A* SEARCH

A* (Closed,Open){
If Open is empty, stop, announcing no solution exists.
Otherwise{

Split Open into two parts,(f(Node),g(Node),Node) which
is the first element of Open and RestOpen which is Open
with the first element removed.
If Node is the goal, stop, announcing success.
Otherwise{

Expand Node.
Create UpdatedClosed by adding (g(Node),Node) to Closed.
For each child, C, of Node

calculate g(C), h(C) and f(C).
if C is on Closed with a g(N) value of G2 and

G2 < g(C), then discard C.
otherwise, if C is on Closed, remove the instance

of C from Closed and merge (f(C),g(C),C) into
RestOpen.

otherwise, if C is on RestOpen with a g(N) value of
of G2 and G2 < g(C), discard C.

otherwise if C is on RestOpen, delete the old instance
of C on RestOpen and merge (f(C),g(C),C) onto
RestOpen.

otherwise merge (f(C),g(C),C) into RestOpen.
I

A* (UpdatedClosed,RestOpen)

-my particular problem. .4 * operates in the same manner as A' except that two

heuristic functions h(N) and hifocal(N) are required and one new list, normally

called Focal, is maintained in addition to Closed and Open. Focal is a subset of

Open. Let the first node on Open be Nmin* This node. by definition, has the

lowest composite evaluation (i.e., f(N) value) of all nodes on Open. Nmin is a
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member of Focal. Every other node on Open that has a composite evaluation less

than or equal to f(Nmi) + i is also a member of Focal.

Instead of selecting Nmin directly from Open to be the next node

expanded, all nodes on Focal are rated by a second heuristic function, hfocal(N).

The member of Focal that receives the lowest hfocal(N) rating is chosen as the

next expanded node. The heuristic h focal(N) is intended to estimate the work

required to arrive at a solution from node N. Often, hfocal(N) is identical to the

lower-bound evaluation, h(N), reflecting the theory that the node closest to the

goal should require the least amount of work to complete a solution path. When

h(N) = h focal(N), the procedure examines successive members of Open,

beginning with Nmin, until the composite evaluation of the member exceeds

f(Nin) + E. Of these nodes, the one with the lowest lower-bound evaluation is

selected for expansion. If multiple nodes have the same lower-bound evaluation,

the node with the lowest composite evaluation is selected. Table 5 provides a

procedural definition of A. * search.

Other than the process used to select the next expanded node, A *

operates exactly as does the A* algorithm. In many cases, At * is more efficient

than A* since some nodes can be "skipped over" in the expansion process. Thus,

A * is often more appropriate for semi-optimizing tasks. This is particularly true

when there are many feasible solutions whose cost is very close to optimal. Then.

the At * algorithm avoids the necessity of finding each such solution by returning

the first solution found to be within c of the optimal solution.
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TABLE 5
EPSILON-ADMISSIBLE A* SEARCH

IIEpsilon_A* (Closed,Open)
{
If Open is empty, stop, announcing no solution exists.
Otherwise{

Let Focal be the empty list
Set f min to be the f(N) value of the first node on Open
While Node on Open has f(N) < f min + E
{-
Evaluate h focal(Node)
Merge Node onto Focal, in order of increasing

h focal(Node) values
} -

Split Open into two parts,(f(Node),g(Node),Node) which
is the first element of Focal and RestOpen which is Open
with the first element of Focal removed.
If Node is the goal, stop, announcing success.
Otherwise

{
Expand Node.
Create UpdatedClosed by adding (g(Node),Node) to Closed.
For each child, C, of Node{

calculate g(C), h(C) and f(C).
if C is on Closed with a g(N) value of G2 and

G2 <, g(C), then discard C.
otherwise, if C is on Closed, remove the instance

of C from Closed and merge (f(C),g(C),C) into
RestOpen.

otherwise, if C is on RestOpen with a g(N) value of
of G2 and G2 <, g(C), discard C.

otherwise if C is on RestOpen, delete the old instance
of C on RestOpen and merge (f(C).g(C),C) onto
RestOpen.

otherwise merge tf(C),g(C),C) into RestOpen.

Epsilon A' (UpdatedClosedRestOpen)
}}

}
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C. PROBLEM REPRESENTATION

Problem representation is a core area within artificial intelligence that has

produced volumes of material [Ref. 2,6.8.11]. It is inappropriate to review all of

the literature within the confines of this work. Rather, we begin with the generally

agreed upon observation that, "State space representations are more suited to

problems in which the final solution can be specified as a path or as a single node

[in a graph]" [Ref. 6, p. 261. Clearly, a solution to the weighted-region problem is a

path and thus, the state space representation is appropriate.

A state space representation of a problem includes both states and operators.

A state is an encoding of the current progress towards reaching the solution. The

operators specify methods of moving between states. Framing these definitions in

the context of a path-planning problem, suppose that the task is to find the

shortest-distance on-road route from intersection A to intersection B and that the

system has determined the best path from A to an intermediate intersection, I.

Figure 1 depicts this situation; the heavy line represents the path from A to I.

The state at the point depicted in Figure 1 describes progress towards the

goal. Thus, it must capture the distance already traveled from A to I the fact

that the known path terminates at I, and some estimate of the cost remaining to

complete the path from I to B. There is a single operator that allows movement

from the current intersection (I) to those intersections adjacent to it (I11I2.13, and

14). If each intersection is labeled with its state information, then Figure 1

satisfies the definition of a state space graph, a graph where each state is

connected to its successor states. In general. a state space graph includes one link

for each operator that can be applied to any state.
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14

Figure 1. A Road Network Problem
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Recall the requirements of the A* algorithm and note that these are all met

by our definition of a state description. A* is an informed systematic strategy that

attempts to avoid expanding useless states (states not on the solution path).

Thus, A* prunes useless states from the search. Note that this ability is closely

tied to the state description provided by the problem representation.

Due to the pruning ability evinced by the A* strategy it is classified as a

8plit-and-prune [Ref. 6] method. In the split-and-prune paradigm, partial solutions

(such as the path from A to I in Figure 1) represent a set of complete solutions

(all paths from A through I to B). Whenever a partial solution is refined by

applying an operator, yielding another partial solution, the set of possible

solutions has been split. As an example, extending the partial solution of Figure 1

to intersection 13 splits the set of possible solutions from I into one subset that

includes 13 as the next intersection on the path and one subset that does not.

Then, those subsets representing solutions that cannot possibly contain the

optimal solution can be pruned from the search.

Systematic strategies are complete and non-redundant. The completeness

requirement implies that no set of possible solutions can be pruned if that set

might contain the optimal solution. The non-redundancy requirement implies that

splitting a set of solutions should not regenerate previously discovered partial

solutions. Thus. a state space problem representation must account for these

requirements. There is an obvious solution when the problem requires finding the

shortest distance route on a road network. A correct representation for the

weighted-region problem is not as self-evident.
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A suitable problem representation for the weighted-region problem minimizes

information loss, specifies easily computable state transformation operators, and

supports the use of the split-and-prune paradigm by a systematic strategy. These

are general requirements of the representation. More specific properties are

developed in the following sections.

D. PLANNING

Research into the planning process has been a central activity in the artificial

intelligence community for many years [Ref. 12]. The concerns usually involve

task or activity planning while specific route-planning problems have received

more attention from the operations research community [Ref. 13.141. However,

the operations research effort has generally been directed towards devising search

S strategies to be used on graph representations of static linear media, road

networks as an example. Artificial intelligence work has been more focused on

devising intelligent problem representations that enhance the search process. The

weighted-region problem seems ill-suited to description by finite graphs since a

continuous real-world environment must be modeled. Representing a continuous

environment by a finite graph is tantamount to developing a 1:1 mapping

between the reals and integers. Clearly, any such mapping cannot be totally

information preserving. A principal goal then is to levise a problem

representation that minimizes information ioss while providing for efficient

operators. In the following sections, we examine several planning systems that

exhibit properties useful in solving the weighted-region problem.
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1. The General Problem Solver (GPS)

GPS was developed as a model of the human problem solving process [Ref.

15]. It was intended to be sufficiently general so that it could be applied in a

variety of planning domains [Ref. 12]. Comprehensive studies have been made of

GPS performance in the areas of cryptoarithmetic, formal logic, and chess

playing. Protocol analysis of humans solving problems in these same domains

show that human behavior and GPS behavior correlate to a high degree [Ref. 12].

The main problem solving strategy incorporated in GPS is meana-ends

analysis. The planning process is viewed as an iterative application of operators

that transform the start state into the goal state. The sequence of operators

eventually used to produce the desired transformation becomes the finished plan.

Operators are rated prior to application by measuring the amount that they can

decrease the difference between the start and goal state. Means-ends analysis

attempts to eliminate particular levels of difference through recursive techniques.

There are several drawbacks in the means-ends analysis paradigm. The

heuristic nature of the method (rating differences and operator applicability) can

create long chains of problem solving steps that abruptly dead end. Also, means-

ends analysis does not strive for optimal solutions; any solution will suffice.

Further, means-ends analysis does not deal with interacting subproblems

effectively. If the completion of one subgoal prevents completion of another. GPS

can only return to the start and attempt a different ordering of subgoals.

Further, GPS requires specific knowledge allowing problem decomposition (by

stating the effects of operator application). Thus. although GPS is a reasonable
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model of the human problem solving process in at least three domains, it does not

S seem applicable to this particular path-planning problem.

However, some key issues involved in the GPS paradigm are desirable.

GPS presents a method for saving as much of a workable plan as possible,

recursion. In fact, recursive decomposition will prove to be useful in solving the

weighted-region problem. Rating the differences eliminated by operators and

choosing for application those that produce the most substantial reductions is

akin to the human ability to view the physical world as homogeneous regions, not

as discrete points. GPS also utilizes a dynamically changing world view (again

through recursion), not a static representation. Finally, GPS completes its plans

in a hierarchy of abstractions.

2. Opportunistic Planning

]In [Ref. 16] a different and more complicated theory of human planning is

developed. This paradigm, called island driving or opportunistic planning,

incorporates the human trait of attempting to produce optimal (in some sense)

plans. This model recognizes the human ability to move freely between many

levels of abstraction during the planning process. This characteristic has been

termed multidirectional processing. Another salient observation of the human

planning process is that it is opportunistic. Humans are able to exploit situations

in which the completion of one subgoal is greatlv enhanced by (or even included

in) the completion of another subgoal. (If I go around the mountain, I'll not only

avoid a long slow climb, but I'll end up very close to a major highway as well.)

Through opportunism. human planning has a bottom-up component. Steps in a

plan can be included when they are conveniently introduced.
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The findings of [Ref. 161 include several key observations. Knowledge of

the domain is very important and optimal planning relies on the specific

capabilities (options) of the subject for which the plan is being developed (much

as the area-cost map, as defined in Chapter I, is keyed to the abilities of a specific

agent). Key observations about the physical world can dictate immediate

inclusion of some parts of a plan (the river must be crossed at the bridge). This

indicates the value of eliminating fixed steps in the planning process, such as

dogmatically proceeding from start to goal in a graph search. A multidirectional

approach can be beneficial. Finally, humans use levels of abstraction in planning.

This suggests that representing terrain in a similar fashion can be useful. A simple

abstraction might view terrain as homogeneous regions at one level and as lattice

points at another.

The implementation of the [Ref. 16] model is quite complex and includes

many different planning specialists who communicate through a shared

blackboard that has five different planes of planning decision categories. The

implementation is intended to serve as a general problem solving apparatus.

Without further discussion, we suggest that the geometric nature of the problem

at hand favors a less complex system. However, key observations made in [Ref.

16] should prove very useful.

3. Refinement of Skeletal Plans

The human problem solving process has also been studied and reported in

[Ref. 17]. The key observation of this work is that humans tend not to "reinvent

the wheel". Specifically, the study observed scientists who were planning

experiments. It was noted that the process often began with an abstract proven
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skeletal plan that included the basic steps that the particular experiment should

follow. Using domain knowledge of the specific problem at hand, one of a set of

such general purpose plans would be expanded to produce the desired experiment

plan. Thus, the general process can be viewed as the incremental refinement of a

general-purpose skeletal plan.

The theories developed in this work have been implemented in the

MOLGEN system that can be used to plan experiments in the molecular genetics

field. MOLGEN has two primary components, one that chooses an appropriate

skeletal plan, and one that refines this chosen plan. Work has not progressed far

on the plan selection process. A table look-up of a taxonomy of predefined plan

utility values comprises the general methodology. The refinement process relies on

a large hierarchically arranged knowledge base of laboratory techniques. The stepse of the selected plan are linearly procemed against the knowledge base material to

complete the process of plan instantiation.

This work formalizes an important human planning trait. Utilization of

skeletal plans is the paramount example of reusing already expended effort. In a

sense, this is a form of opportunistic planning. One can make use of a known

solution to a similar problem to guide the search for a solution to the problem at

hand. There may be a method to incorporate this technique into a solving system

for the weighted-region problem. However. some iifficulties must be overcome.

The linear instantiation methods used by MOLGEN conflict with the interacting

subproblems inherent in the weighted-region problem. Further, describing a

previous solution by its general utility seems inappropriate. In cases where a

problem is a nearly exact copy of a previous case, the applicability of skeletal
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plans is obvious. However, due to the continuous nature of the physical world,

such a situation does not occur with any regularity. When new instances of the -,

weighted-region problem are different from stored solutions to old problem

instances, it is difficult to see how the old solutions might be exploited.

4. Nets of Action Hierarchies (NOAH)

The NOAH system was created to operate in the problem solving and

planning domain [Ref. 181. NOAH is regarded as the archetypal hierarchical

planning system. This work is not based on the human paradigm per se, but is

intended to address some of the key difficulties that were apparent in other

planning models (such as GPS, HACKER, and INTERPLAN). NOAH plans

actions in a procedural net framework that contains both declarative and

procedural knowledge. The procedural knowledge is tied to a specific problem

domain and is capable of expanding goals into subgoals. Declarative knowledge is

used to express the effects of executing parts of a plan. Such knowledge is useful

in noting how the state of the problem has been altered by executing particular

problem solving operators.

A key contribution of NOAH was the use of a least-commitment strategy

to avoid the difficulties of subproblem interaction suffered by most other planning

systems. The least-commitment principle requires that subgoals not be ordered

until absolutely necessary. Subgoals are assumed to be executable in parallel

unless interaction difficulties become apparent. This philosophy may be applicable

to the weighted-region problem. Since the weighted-region problem does not seem

to be readily decomposable, intermediate subgoals may have to be selected at the

latest possible time. NOAH includes active agents, called critics, whose specific
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task is to find interaction problems. Only when a critic reports a conflict is an

ordering imposed on subgoal completion. As a trivial example, consider a

movement problem involving a bridge. Suppose that the original problem is to

move from start, A to goal, B, and that a river with a single bridge, located at C,

lies between them. Domain (procedural) knowledge would decompose the original

move(A,B) goal into two subgoals; move(A,C) and move(C,B). Declarative

knowledge would be used to describe the problem state associated with each

subgoal. A critic would then find the readily apparent subgoal conflict and suggest

an ordering of first move(A,C), then move(C,B).

The key concept that can be learned from NOAH (relative to the general

weighted-region problem) is the importance of actively planning for interaction

conflicts. Delaying the selection of intermediate subgoals can lessen the impact of

S these conflicts. Also, knowledge plays an important role in this system. Both

domain and declarative knowledge have been employed. Clearly, the value of

domain knowledge has been espoused by most of the schema examined. NOAH

has also shown the importance of declarative knowledge in reasoning about the

state of the system itself.

5. Summary

We have seen that human-like planning can be a very complex process

which need not be as well ordered as a graph search from start to goal. The I
amount of knowledge brought to bear on a problem is very important, not only in

allowing decompositions, but in taking advantage of randomly occurring

opportunities as well. Humans also tend to reuse frameworks of plans that have

proven successful in past enterprises. Reusing known solutions to solved instances
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of the weighted-region problem may prove helpful. Rating the performance of

available operators by the amount of progress (difference reduction) they achieve

is also an important aspect of human planning. Actively planning for interaction

conflicts is valuable. When such conflicts are found at an early stage, the number

of subgoals involved will remain low and replanning will be minimized. Finally,

levels of abstraction are also important in that they can simplify reasoning. The

selection of an appropriate problem representation is fundamental in fulfilling

these requirements.

E. SOLVING A BINARY-TERRAIN PATH-PLANNING PROBLEM

1. Introduction

Much has been accomplished in the areas of planning motions for robot

manipulators and planning movements of mobile robots within localized areas. In

both problem domains, the task is to plan an optimal-cost path for movement of

the robot (or a robot manipulator) that does not intersect any obstacles in the

physical environment (i.e., the physical working space for the robot). These

problems are often termed binary-case problems because there are only two

possible classifications for any point in the environment. In binary-case problem

representations, every specifiable point in the environment is classified as

traversable or non-traversable: thus every point belongs to a "free space" area or

an obstacle area.

The binary-case problems constitute a simplified special case of the general

weighted-region problem. Since all traversable space is the same, there is no point

in including a cost term in the objective function that is to be minimized.
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Removing the cost term simplifies the task to that of finding the shortest-distance

path between the two given points, the start and goal. Thus, binary-case

techniques take advantage of the straight-line principle: a straight line between

any two points constitutes the shortest distance between those two points.

Occasionally, the solution techniques are designed to prefer paths that do

not "run too close" to obstacle areas. These techniques allow for some amount of

error by a robotic agent executing the plan because they view their plans as exact

specifications for sequences of motion. A solution path for the general weighted-

region problem normally covers a much greater range of motion than those plans

generated by binary-case techniques. Thus, solution paths for the general

weighted-region problem are more appropriately viewed as general guidance for

movement, not as exact routes to be carefully followed. In this case, producing

plans that allow for agent error is not a relevant concern.

Aside from this issue, solution methods for the binary-case problems solve

a special case of the weighted-region problem. In both domains, the cardinal task

is that of planning an optimal-cost route over a continuous space. Thus,

examining the binary-case techniques is important. The most conceptuaily simple

binary-case strategy is based on the generate-and-test paradigm. In this paradigm,

a plausible move generator proposes a possible solution that is inspected for

acceptability by a test procedure. [Ref. 81.

2. A Simple Localized-Improvement Model

The simple localized-improvement technique used to solve binary-case

path-planning problems posits a representation of the environment that includes

*45.

MM



rectangular obstacles defined by the Cartesian coordinates of each vertex and of

the starting and goal locations [Ref. 191. The straight-line principle is used as the

path generator in that a line segment from the start to the goal is proposed as the

initial solution for the optimal start-to-goal path. This line segment is inspected

for intersections with any of the rectangular obstacles. If no intersection is found.,

the problem has been solved. However, if an intersection does occur, intermediate

subgoals defined by two of the obstacle vertices are proposed. The two vertices

chosen are normally diagonally opposite each other (although it is possible that

the two vertices define a face of the obstacle in some cases). Two new possible

solution paths are then generated. One runs from the start to the first

intermediate subgoal to goal and the other from start to the second intermediate

subgoal to the goal. The corresponding line segments are then inspected for

obstacle intersections. The results of such inspections dictate actions analogous to

those required for the originally proposed path.
S

This method has several key advantages, the first of which is its conceptual

simplicity. The required algorithms are easily implemented and do not require

sophisticated techniques. Secondly. the method can utilize the straight-line

principle to generate only plausible solutions. Obstacles and paths that do not

intersect the generated (possible) solution paths and are thus far afield can be

ignored. Thirdly. the method allows the problem description to be developed

dynamically. The routes generated can be viewed as paths through a graph where

graph nodes are obstacle vertices and graph links represent clear (non-obstructed)

paths between obstacle vertices. The graph is created dynamically in that new

nodes are added to the graph only when required by a collision (i.e., a path
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intersection with an obstacle boundary). A final advantage of this method is due

' to the combined effects of the first three characteristics. The method provides a

solution relatively quickly because it avoids wasted computations.

This simple technique also has several distinct disadvantages. While

modeling obstacles as rectangles allows the development of simple decision criteria

for defining intermediate subgoals, it is a poor assumption to posit that every

object in the physical environment can be adequately modeled by a rectangle.

(One could argue that calculus is based on a similar premise. A key difference in

this case is that a rectangle width can never reach zero as a limit and as rectangle

width decreases, the number of obstacles to be considered grows accordingly.

Such growth invalidates the simplicity and efficiency of the method.) A second,

and much more serious, deficiency associated with this simple technique is that it

S may yield non-optimal solutions. The method functions perfectly if only one

obstacle is involved. However, when two or more obstacles are present in the

environment, interacting subproblems can confound the technique. Figure 2

shows an instance where this anomaly occurs.

In Figure 2. the original straight line path from start (s) to goal (g) is

hypothesized by a plausible move generator. A collision on this path is detected

and the interesting points of the obstacle are determined to be ol and o2. Then,

segments s-ol. ol-g, s-o2 and o2-g are tested. Segments s-ol, ol-g and s-o2 are

found to be obstacle free. Another collision involving interesting points o3 and o4

is detected on the proposed o2-g segment. The new segments o2-o3, o3-g, o2-o4

and o4-g are all tested and determined to be obstacle free. Path lengths are then

computed and the s-ol-g path has the shortest length of all paths, so it is
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returned as the optimal solution. However, the segment s-o3 is obstacle free.

Thus, the route s-o3-g is legitimate and is clearly shorter than the s-o2-o3-g route

that was used to determine optimality. It could easily be true that s-o3-g is

shorter than the s-ol-g) route that was selected as the optimal-cost solution path.

From this example, it is clear that the simple and intuitively appealing

localized-improvement approach may not yield optimal results. An additional

procedure to smooth out (i.e., remove unnecessary points) the routes must be

interposed between route finding and selecting the solution path if optimality is

desired. The smoothing operation can be very expensive, dependent upon path

length, because all points on the path, except adjacent points, have to be

inspected for possible elimination. Therefore, a path with n points would require

t=n-2

that i point pairs be inspected (an O(n2) operation). Moreover, all paths

can be subjected to this procedure. Notice that in the example, the optimal path

is generated by smoothing out the greatest-distance path.

3. The VGraph Solution Technique

An alternative to the simple localized-improvement model involves the %

search of an explicit undirected graph and has been called the Visibility Graph or

VGraph model [Ref. 17]. Here, obstacles are modeled as convex polygons,

represented by listing the coordinates of each vertex. The coordinates of the start

and goal are also known. A graph is created such that each node in the graph

corresponds to the starting coordinates, the goal coordinates, or the coordinates of

an obstacle vertex. A link is included in the graph for each straight line segment

that can connect any two vertex coordinates (represented by graph nodes)

49

%%

"B



without intersecting an obstacle. Once such a graph has been constructed,

standard graph search techniques such as Dijkstra's Algorithm or one of the A*

family can be applied to find an optimal solution. No smoothing operations are

ever required. The lower half of Figure 3 depicts a completed graph construction,

built from the associated environmental space description (i.e., the configuration

of obstacles in the working space of interest) shown in the top half of the figure.

The VGraph approach eliminates the difficulties associated with the simple

localized-improvement paradigm. Obstacles can be more realistically modeled as

convex polygons and truly optimal paths (in terms of the problem representation)

are provided without the use of expensive ancillary operations. Also note that the

straight-line principle is used in this method to determine membership in the link

set of the graph. However, there are also costs associated with the VGraph

method. The creation of the problem representation can require a large amount of

computation. If there are N nodes in the graph then E i line segments must

f1

be inspected for possible inclusion into the link set (an O(N 2) operation).

(However, this is an absolute upper bound on inspections. An intelligent

procedure would note that interior chords produced by two vertices of the same

obstacle need not be inspected. However, if obstacles are allowed to overlap, the

number of inspections required tends toward the upper bound.) Thus. unlike the

localized-improvement method, the VGraph method considers all obstacies in the

environment in that the graph is statically created before search begins by an

exhaustive search of all obstacles. In Figure 3 for example, all links associated

with obstacle A are extraneous. In a situation where path planning takes place
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over the same area many times, the costs of graph creation can be spread out and

thus made less important over time. However, such a situation may not always

prevail.

4. Free Space Characterization Methods

An approach that relies on the use of generalized cones [Ref. 201 developed

in connection with vision research has also been developed. Generalized cones

(also known as generalized cylinders) are normally used to represent the volume

and shape of three-dimensional objects. The cones are described by sweeping a

cross-sectional area (two-dimensional) along a curve in space called a spine. The

shape of the cross section is deformed by a predefined sweeping rule as it moves

along the spine [Ref. 211. As a path-planning paradigm. the free space between

obstacles is described as a series of overlapping, two-dimensional cones. The cones

have straight spines and the cross sections are represented as line segments. This AZ

explains the loss of one degree in dimensionality since line segments are used as

opposed to areal figures. The line segments (used in lieu of cross sections) are

positioned perpendicularly to the spine and the length of the left and right

portions of the segment are varied independently as sweeping takes place. The

sweeping rule is a predefined piecewise-linear function created by measuring

distances to obstacle edges from the spine [Ref. 211 (see Figure 4). Any two

obstacle edges are candidates for creating free space defining cones. Essentially.

the requirements for two edges to define a cone are that they belong to different

obstacles and that they approximately face each other. (Obstacle edges face each

other when they lie approximately parallel and they have no other obstacle edges

separating them.) Once a complete set of cones has been formed, a graph is
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constructed by using spine intersection information. The nodes in the graph

correspond to the coordinates of spine intersections. The graph link set is

composed of links between consecutive spine intersections. The graph is essentially

a Voronoi diagram [Ref. 141 of the environment space. A solution to the path-

planning problem is provided by conducting a search of the graph representing

this Voronoi diagram.

The cost of this algorithm can be high, primarily due to the graph

creation. If E is the number of obstacle edges, then the time complexity is, at

worst 0(E 4), but may be as low as O(E2c2 gn ) due to the similarities to the

Voronoi diagram [Ref. 21]. This free space characterization method is primarily

concerned with lessening the rotational problems (i.e., how to rotate an irregularly

shaped body so that it can "fit" between slightly separated obstacles) and the

"not too close" problem for a two-dimensional object (i.e., not a point) moving

through a two-dimensional space and thus has added complexity. However, it is

interesting in this analysis for several reasons. As usual, the method employs the

straight-line principle and attempts to establish a graph-theoretic basis to

facilitate the search for the optimal path. A new feature is that a free space

characterization is emphasized, not an obstacle space representation. Emphasis on

free space may be important for a general-case solution because it is the diversity

of these traversable areas that gives rise to much of the added complexity of the

problem, when compared to a binary-case representation. Also, characterization of

free space results in a smaller graph than that required by the VGraph method.

This method has the salient drawback that following spines does not produce

optimal routes.
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5. The Potential-Fields Method

Another binary-case solution technique is called the potential-fields

approach [Ref. 221. This technique is also concerned with planning for paths that

do not run too close to obstacles. Conceptually, obstacles are modeled as areas of

increased elevation, i.e., hills with sloping sides where the hilltop is the center of

the obstacle. The object to be moved can be regarded as a ball bearing that has

an initial location corresponding to the starting coordinates. In operation, the

entire environment space is "tilted" from the start to the goal so that the ball

bearing "rolls" in the desired direction. The path followed by the ball bearing is

provided as a solution.

This method has some salient deficiencies. The ball bearing can roll into a

box canyon and become trapped before arriving at the goal. In such an instance,

backtracking measures are necessary to restart the procedure. Also, a path that

requires going over a small rise near the start is avoided, even though it may lead

to the optimal solution path.

The potential-fields method employs a graph-theoretic basis in the form of

a regular grid. The straight-line principle is also brought to bear in the form of

gravity. Thus, key similarities are present when compared to the other methods.

In many ways, the method is similar to the wavefront-propagation technique

(discussed in Section II.F.2). The potential-fields method models a continuously

varying cost (i.e., elevation change) as discrete point costs in a lattice-like graph.
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6. Summary

There are other methods which have been developed to solve the binary-

case problem [Ref. 23.24,25,26,27,28,29,30]. Although differing in detail, each of

these can be classified as a version of one of the methods discussed above.

Important problem characteristics can be extracted from the examination of

solution techniques. Interacting subproblems can confound problem

decomposition, as evinced by the simple localized-improvement method. The

VGraph method used an exhaustive search of a particular representation (the

visibility graph) to overcome the interaction problem.

A primary strategy is to find a graph-based problem representation, either

by the characterization of obstacles or free space. Once such a representation has

been established, well-founded graph search techniques can be applied to solve the

path-planning problem. However, the creation of an exhaustive graph can be

computationally expensive. A dynamically created graph is more efficient (as in

the simple localized-improvement model) if interaction problems can be overcome.

A problem with the dynamic graphs of the simple localized-improvement method

is that only local information is used. This greedy method is insufficient to

support the requirement for global optimality. Finally, the straight-line principle

is crucial to the success of each method. Many of these observations are important

in developing solutions to the general-case weighted-region problem because of

shared characteristics. In fact, one solution method, known as the dynamic

programming, regular grid or wavefront-propagation method, has often been

applied to both versions of the weighted-region problem. We now examine

solution techniques appropriate for the general-case weighted-region problem.
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F. SOLVING THE GENERAL PATH-PLANNING PROBLEM

1. Introduction

The general-case weighted-region problem differs from the binary-case

version by the inclusion of cost ratings for the traversable areas. As the cost of

traversing one area can be quite different from another, a new parameter is

introduced into the cost computation for each possible path. In the binary-case

problem, the cost of traversing every route is computed by the simple formula

n

Cost = di where there are n line segments in the complete path and di is the

Euclidean distance along the ith line segment. In the general-case problem, the

formula becomes Cost c i di where n and di have the same meaning. The new

parameter, ci is the cost per unit length of the ith line segment. Also, the number

of line segments is typically increased. As an example, a path crossing two

different cost areas consecutively is represented by two line segments. Only one

line segment is required to reflect the same situation in a binary-case

representation. The addition of cost information has the effect of invalidating the

straight-line principle so prevalent in the binary-case solution techniques.

A second major difference between general-case and binary-case instances

of the weighted-region problem is based the opportunity to perform problem

decomposition. In the binary-case version, decomposition can be done because

the optimal-cost start-to-goal path must either be a straight line between them or

a path that includes obstacle region vertices as intermediate turn points. Thus, it

is simple to construct a graph representation of the problem, as done in the
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VGraph technique. In general-case instances of the problem, decomposition into

subproblems is very difficult to achieve. There are some special cases, (see [Ref.

31] for example) where a graph similar to that used in the VGraph technique can

be constructed. However, in general, it is not possible to specify a finite set of

points that must include all turn points on an optimal-cost start-to-goal solution

path. Because of this, the general-case instance of the weighted-region problem is

much more difficult to solve. Thus, there has not been as much progress in solving

the general-case weighted-region problem as we have seen for the binary-case

version. The first attempts to solve the general-case problem were extensions of an

exhaustive search method used to solve strict binary-case representations.

2. Wavefront Propagation

Wavefront propagation is the most commonly used method to solve the

weighted-region problem. The method's popularity is justified by its conceptual

simplicity and flexibility. The technique can be applied to both binary-case and

general-case instances of the weighted-region problem without modification in

either implementation or computational complexity. (Of course, the problem

representation must reflect the task at hand.)

Wavefront propagation can be viewed as an extension of the VGraph

philosophy in that the complexity of solving the problem is primarily borne by

some component that creates the specific graph-based problem representation.

Given an appropriate representation, a standard weak method of search is applied

to yield an optimal-cost solution path. When using wavefront propagation, the

graph-based problem representation is actually a lattice structure, as described

below.
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a. Basic Wavefront Propagation

Recall that the VGraph technique relies on an exhaustive graph

consisting of a node for each obstacle vertex and a link for each pair of vertices

that can be connected by an unobstructed line segment (i.e., pass a "line of sight"

test). This structure is appropriate for binary-case problems because of the

straight-line principle. However, the same graph structure is not valid for the

general-case weighted-region problem because region vertices do not play the same

all-important role. Turn points on the optimal path can occur anywhere.

However, if the graph consists of a node for every representable point in the

environment, then the graph must include a node for every representable turn

point. The resolution of the problem representation plays an important role here.

The number of discrete points used to model the continuous environment specifiese the resolution of the representation. The nodes are uniformly spaced and

resolution determines the intra-node spacing. This is the basic premise of the

wavefront strategy; apply a standard search strategy to a finite exhaustive graph.

Having established the basic premise, the wavefront strategy departs

from the VGraph model. Instead of creating an explicit link between each two

obstacle vertices having line of sight, the wavefront graph implicitly includes a

link between each node and all of its physically adjacent neighbors. So, instead of

representing long distance, unobstructed path segments, the wavefront graph links

represent small movements that could be made from each discrete point in the

environment modeled by a graph node. Thus, there is a regular pattern of links

between uniformly placed nodes. The result is as if a grid (or lattice structure) has

been superimposed on the environment. The graph is made applicable to the
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general-case problem by associating a variable cost with each link, reflecting.the

cost to traverse space in the environment represented by the link. (For a binary

problem, the cost is constant.) Nodes that lie in obstacle areas have conceptually

infinite-cost links.

Again, resolution plays an important role. A determination must be

made as to how many physically adjacent nodes should be recognized as

neighboring since this determines the branching factor at each node. The more

links in the graph, the more time required to search the graph and the more space

required to store the graph. Specifying eight neighbors is usually judged as the

point of diminishing returns between time and space required to reach a solution

and the accuracy of the solution. To understand this, consider the operation of

the strategy.

Wavefront propagation applies omnidirectional, uniform-cost search (as

defined in Section Il.B.1) to a directed graph representing the environment. It is

essentially a dynamic programming solution to the problem. Recall that uniform-

cost search finds the optimal path to each node in the graph that can be reached

before the solution is found. This is the dynamic programming principle of solving

all subproblems in order to solve the overall problem. In a physical analogy, the

wavefront-propagation process is akin to dropping a pebble into a calm body of

water and observing the propagation of the resulting wavefront. When the

wavefront touches the goal, a solution path can be retrieved by tracing gradients

to "snapshots" of the wavefront back to its origin (which corresponds to the start

location). Implementations using uniform-cost search reduce the gradient-tracing

requirement to referencing backpointers set as the search progressed.
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Resolution is important to the accuracy of the solution paths reported

by wavefront methods. A true wavefront (as in the pebble and water analogy)

would change its position along a continuum. Implementations of the wavefront-

propagation algorithm model this change of position as a series of discrete points

(nodes in a graph). Obviously, the number of nodes in the graph helps determine

the accuracy of the solution. Thus, the satisficing nature of wavefront propagation

becomes apparent; a simplified problem representation is used to reduce the

amount of search required to arrive at a "satisfactory" solution path. In general,

however, the weighted-region problem is a semi-optimizing task because, in most

cases, the true optimal path can only be described as two-tuples of real numbers

indicating turn points of a path in the Cartesian plane. The exact real numbers

cannot, in general, be represented on a finite-precision machine. Thus. because the

task is semi-optimizing, the problem representation only needs to provide a

resolution that ensures an acceptable level of error. Often, the choice is made to

equate a screen pixel to a node. When a map is displayed on a computer graphics

screen, the pixel is the highest possible unit of resolution. Thus, wavefront-

propagation methods are sometimes referred to as pixel planners. The pixel

resolution allows the satisficing nature of wavefront propagation to approximate,

as closely as possible, the semi-optimizing character of the weighted-region

problem.

The number of nodes in the graph is essentially a localized resolution

issue. The number of links (per node) in the graph has a more global effect on

solution accuracy in that the branching 'actor at each node determines the

physical pattern of the search. As a :'irnpiifying assumption for illustrative
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purposes, suppose that the start is placed at the origin of a two-dimensional

coordinate system, that the cost of traversing links is constant, and that no

obstacles are present. Then, in a perfect situation where there is a link between

each two nodes having line of sight (a conceptually infinite branching factor at

each node), a uniform-cost search expands in a circular pattern (centered at the

start). Constraining the number of allowable links modifies the search pattern by

introducing approximations. That is, the circular shape is approximated by a

(linearly sided) polygon inscribed in the circle. The polygon vertices lie exactly on

the circle and are determined by sequences of homogeneous links (links that do

not change direction). Thus, the number of polygon vertices corresponds exactly

to the number of links allowed at each node. Between each polygon vertex, the

circular shape is approximated by a chord.

Suppose that the problem is as described above and that the search

relies on a four-way connected graph (i.e., a branching factor of 4 at each node)

where each node has two vertical and two horizontal outgoing links. Then, the

pattern of search (node expansion) during wavefront propagation assumes the

shape of a square that has vertices on the x and y axis, as in Figure 5. The

accuracy of a solution based on this model is worst where the chord is farthest

from the circumscribing circle. This occurs on headings that are multiples of 45

degrees from the origin. For these points, uniform-cost search yields a solution

path having cost C when the true straight-line path has cost TC, the Euclidean

distance of the path multiplied by the appropriate cost factor. The error in the

solution can be expressed as a ratio of the actual cost to the computed cost.

TC/C=coa(45)=0.707
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Thus, there is a potential for approximately 30% error in the solution cost.

Increasing the connectivity of the graph so that diagonal links are also represented

results in an eight-way connected graph. Again, the greatest error occurs at

midpoints of chords, now located on headings that are multiples of 22.5 degrees

from the origin. This representation limits the maximum error of path cost to

approximately 8% and has become the practical standard of acceptable error for

wavefront-propagation implementations.

The time complexity of wavefront propagation is best expressed in

terms of the number of nodes expanded during the search. In the worst case, the

search expands all nodes within a circle of radius equal to the cost of the solution

path. The area of a circle is 7rr , so the complexity can be loosely tied to an 0(n)

bound. Relying on this bound, it is clear that there is a direct tradeoff between

the time and space required to solve the problem and the accuracy of the solution.

The predetermined resolution fixes this tradeoff. Note that increasing the

2resolution by a factor of X increases the number of nodes in the graph by X . As

an example, to represent a 10 square mile area using a resolution of 1/10 mile, 100

nodes required. Increasing the resolution by a factor of 10 to achieve a resolution

of 1/100 mile necessitates 10,000 nodes.

b. A* Search and Wavefront Propagation

Work reported in [Ref. 32,33] has identified problems in the wavefront

strategy and implemented partial solutions for their effects. Digital bias is an

effect that is evident in wavefront solutions and is directly attributable to the

discrete graph representation of a continuous environment. Specifically, wavefront

solutions use connected series of line segments to model straight line paths, i.e., a
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"stair-step" approximation to the line. This modeling anomaly means that there is

a set of optimal paths. all having the same digital cost. between almost every two

points that can be named (the exception occurs when the optimal path consists of

homogeneous links, as defined above). As an example, Figure 6 depicts three

paths across a uniform-cost region that all have the same number of vertical and

horizontal links and thus have the same digital cost. Clearly, the middle path in

Figure 6 best models any single line segment.

The wavefront-propagation techniques reported in [Ref. 32,33] include

heuristics that reward "corner points" (i.e., points where the path changes

heading), thus favoring paths with more turn points. This strategy prefers the

middle path of Figure 6 based on this heuristic. It was also noticed that using a

lower-bound cost evaluation function, such as that required by A* search, favors

S the desired paths. When Euclidean distance assumed to be traveled at optimal

cost is used as the lower-bound component. the composite value (i.e., the f(N)

rating) is lowest for those paths closest to a line between two points. These

heuristics do not totally overcome the problems of digital bias. At first thought, it

seems that A' evaluations would defeat the problem. However. recall that the

lower-bound function estimates remaining distance to the global goal, not to

intermediate turn points along a path. Newer work has used simulated annealing

[Ref. 341 as an optimization procedure to reduce the stair-step appearance of

solution paths [Ref. 35].

Some work reported in [Ref. 32,33] also centered on using A * as a

search strategy and performance improvements (in time) ranging up to twenty

times are cited. It should be noted however, that this work is intended to support
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Note that the paths have been offset vertically by two
units (for clarity). All paths begin and end at the same

locations and have equal lengths.
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Figure 6. Digitally Biased Paths of Equal Length
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a specific wheeled autonomous vehicle, the DARPA sponsored autonomous land

~ vehicle (ALV) built by Martin Marietta [Ref 36]. The ALV is best suited to

roadway travel and thus greatly prefers that media over all other terrain features.

The link costs in the graph subjected to A * search correctly reflect this

preference. As a result, the A(* search generally resembles a standard wavefront

until a roadway is reached. The search then proceeds along the road network until
the goal is found. Off-road shortcuts are not considered. Clearly, the A *

technique may not offer the same time improvements when the agent for which

the path is being planned does not greatly favor one medium f')r travel over all

others.

c. Wavefronts Exploiting Parallelism

There are several implementations of wavefront propagation that

exploit the advantages of parallel-architecture machines (Ref. 29,36]. The most

prominent development is the ADS system [Ref. 36], again intended to support

the DARPA ALV [Ref. 36]. The work reported in [Ref. 36] refers to the strategy

as a dynamic programming solution, which, as has been noted, is a correct

characterization of the wavefront-propagation strategy.

Discussing the ADS system requires introduction of some new

terminology. The gra;.h used by a wavefront-propagation strategy can also be

thought of as a cost map divided into a regular structure of small cells. Recall

that the wavefront graph includes uniformly spaced nodes. Suppose that the

nodes are drawn on paper so that their spatial arrangement reflects the physical

displacement of the real world terrain points that they represent. Drawing in the
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arcs of a four-way connected graph results in a regular grid. This grid is

equivalent to a set of regular cells. Instead of assigning costs to links, assign costs

to each cell, reflecting the cost to move through the cell (in any direction).

The ADS system utilizes a conceptual structure similar to the map

made of many small cells as described above. In addition to the stored cost for

passing through each cell, they also use a Figure of Merit (FOM), an accumulated

cost to reach a cell from a known starting point. Initially, the cell containing the

goal point has a FOM of 0 and all other cells have infinite FOM's. The algorithm

operates by selecting a cell and trying to replace the FOM's of neighboring cells,

based on the FOM of the selected cell. A FOM in a neighbor cell is replaced if

the FOM of the selected cell plus the cost to move into the neighbor cell is less

than the FOM already stored in the neighbor cell.

Up to this point, the ADS implementation is essentially the wavefront-

propagation technique based on a slightly different conceptual structure. However,

note that in a graph having constant link costs, uniform-cost search is breadth-

first search. In the ADS system, a depth-first component in added. The

algorithm "sweeps" across the map in a specific direction (i.e., left to right, top to

bottom, etc.). Each time a cell is selected, its eight neighbors are examined for

possible FOM replacement. After the eight neighbors are updated, the one

neighbor that corresponds to movement in the same direction (i.e.. the right

neighbor in a left to right sweep) becomes the new selected cell and its eight

neighbors are examined for FOM update. This process begins at one edge of the

map and continues moving in the selected direction until the opposite edge of the

map is encountered. Once every row (or column, depending on the direction of
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sweep) has been swept across, the algorithm names a new starting edge and a new

direction for sweeping. The map is swept in this manner, attempting to change

FOM values on each sweep, until no cell changes its FOM value.

The ADS system exploits parallelism by assigning different processors

to different "swatches" of the map. To illustrate, the ADS system uses maps that

are 512 cells wide by 512 cells high. Suppose that the direction of sweep is left to

right and that two processors are available to conduct the search. Each processor

is assigned a 256 high by 512 wide "swatch" of the map to examine. FOM

propagation occurs independently within the two swatches. Results reported by

ADS state that the FOM values stabilize after 20 to 30 sweeps. ADS has

published some timing results for the algorithm. Solving a problem on a

(uniprocessor) DEC VAX 11/780 required 10 minutes. Solving the same problem

on a Butterfly machine (see [Ref. 36]) with 40 processing units (computational

nodes) required 1.05 minutes.

There is a side effect that arises from starting the propagation at the "U

goal instead of the start. The ADS dynamic programmiig method yields the

optimal path to the goal from every cell on map. If an agent strays off-course

during the execution of a planned route and the goal has not changed, the agent

need only locate itself in the correct map cell and retrieve the new optimal path.

No further computations are required.

An attractive alternative to the ADS parallel wavefront-propagation

implementation could be based on machines having mesh-connected architectures.

such as the connection machine 'Ref. 37'. The lattice srructure problem

representation used in wavefront propagation mirrors the physical structure of
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such machines. One computational element could be assigned to each node in the

lattice and the physical connections in the machine could model links of the

lattice. Theoretically, this organization would establish an 0(n) time bound for

the algorithm (where there are n nodes in a solution path). Also, the wavefront-

propagation technique has been implemented on neural-network machines in a

similar manner, although no specific time requirements have been cited in this

work [Ref. 38].

d. Linear Programming

It seems appropriate to mention the fact that four well-known

problem-solving techniques have been mentioned. Generate-and-test was involved

in the first binary-case solution method examined. In connection with the same

examination of the localized-improvement technique, difficulties with interacting

subproblems were discovered. This characteristic has serious effects on divide-

and-conquer strategies. Many discussions have mentioned greedy techniques, such

as the A* algorithm. The fallibility of total reliance on local information has been

shown (in connection with the localized-improvement technique for example).

Wavefront propagation falls into the fourth classical category of dynamic

programming models since it solves all subproblems as a means to securing the

single desired solution to the overall problem. For completeness, we note that the

classic technique of linear programming used in operations research can also be

applied to the weighted-region problem. Linear programming is discussed in

connection with the wavefront-propagation models because both techniques rely

on the same problem representation.
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The graph used by wavefront-propagation techniques can also be

viewed as a network. In this context, the weighted-region problem becomes the

classic operations research problem of finding an optimal path by solving a

minimum-flow through a network problem. In the minimum-flow problem, the

start is the 8ource and the goal is the 8ink. Link costs are the same. A single unit

of flow is injected at the source and balance equations are used to force the flow

out of the sink. Assume there are n nodes in the network and let the cost along

the link from nodei to nodes be denoted c. Assume that the source is node1 and

the goal is node9 . Then, the mathematical formulation is:

9 9

Minimize E cijzij
i=11=1

Subject to

9 9

m=i n=i

9 9

m=i n=i

g-I g-I

E -im- E xig=
m=2 n=2

ziic[0,1]fori,j=2,3,...,g- 1

The constraints restricting zij to be either zero or one are used to

indicate those arcs on the minimal-cost path. The network flow formulation can

be transformed into a simple (non-integer) linear programming formulation since

the flow conservation equations require the problem to be unimodular. Thus, the

constraint ziq[O,1] can be simplified to ziy)O and the standard simplex algorithm
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can be applied. Rewriting the simplified formulation yields:

9 9

Minimize r, Ci, Zi

Subject to
g U

E lrM- E znl=l

MMI n=1

EZm- - zng=-I
M-i n=i

g-1 g-i

E im- E =0
m=2 n-2

Xii '>0

This formulation has been included only for completeness of discussion.

Since the weighted-region problem has only positive costs associated with each

link, it falls into a special category of minimal-cost network flow problems. Thus

the linear programming formulation is impractical. Least-cost path problems

with non-negative link costs are more efficiently solved by other methods, notably

the uniform-cost strategy employed by wavefront-propagation techniques [Ref.

13].

3. The Calculus of Variations Method

After the Second World War, significant importance was given to the

problem of computing optimal trajectories for missile flight. Later, in the 1960's.

the optimal routing of ocean-going ships was studied in a similar fashion. Both of

these problems are similar to the general-case weighted-region problem. All three

posit a starting location, a goal location, and the existence of forces that act
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against the movement of an object en-route. The forces are heterogeneous. A

calculus of variations problem, formally known as the problem of Bolza, was

successfully solved in the missile trajectory and ship-routing domains.

Conceptually, the method operates by proposing an initial path from the start to

the goal and allowing the prevalent forces along the route (the costs from the

area-cost map in the weighted-region problem) to warp this path until it becomes

optimal [Ref. 39].

This method is presented here because it has been used to solve problems

similar to the general-case weighted-region problem without reliance on reduction

to a graph theoretic basis. Instead, a complex and very powerful mathematical

technique has been applied. (Calculus of variations develops a calculus for

functions of functions. An introduction to the subject area can be found in [Ref

4]. A very brief overview is contained in [Ref. 40].) The calculus of variations

approach is not totally appropriate for the weighted-region problem for several

reasons. First, to avoid convergence on a local minimum, the method requires a

reasonable approximation to the optimal solution as input to be used for an initial

path. While this is relatively easy in the missile trajectory and ship routing

domain, obtaining a fairly close approximation in the land route-planning domain

requires effort tantamount to fully solving the problem. Without a given,

reasonable initial solution, the calculus of variations method may never converge.

Secondly, the method requires continuous derivatives of the active forces in the

environment space. These cannot be guaranteed in the weighted-region problem.

Also, solving the Bolza problem with the calculus of variations method requires a

discrete representation of the environment, in that vectors of forces must be
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associated with discrete portions of the environment. Associated difficulties have

been presented in connection with the wavefront method. The calculus-based

method is not guaranteed to find a global minimum. Less expensive techniques

can provide local minima for the weighted-region problem. The final difficulty

associated with the calculus of variations model involves its computational costs.

Recall that a primary difficulty of the wavefront method is its wastefulness and

computational excess. It seems that the mathematical complexity of the calculus

of variations model poses similar problems in terms of computational cost. There

should be a simpler method to solve the weighted-region problem, based on the

structure of the problem itself.

4. The Homogeneous Regions Model

A method for reducing the size of the graph used as the problem

representation, which we term the homogeneous regions method, has been

reported in [Ref. 41]. A key assumption of this method is that the physical terrain

can be described as a finite number of large "patches", each of which exhibits

uniform traversability characteristics. Archetypal "patches" are areas such as

swamps or open fields. This organization is similar to that described in connection

with the area-cost map of Section I.B. However, in [Ref. 41] these areas are

assumed to be convex and centrally-symmetric so that the distance from the

center of the representing polygon to any point on the polygon boundary is

approximately equal. Given these characteristics, a graph is created where the

nodes are patch center points and links connect all physically adjacent nodes. The

cost of traversing a link is determined by finding the proportion of the link that
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lies in each associated patch and multiplying through by an appropriate fraction

of each patch cost figure [Ref. 41].

There are several obvious difficulties with this method. Most real-world

terrain does not seem to fit well with characterization by centrally-symmetric

polygons. Linear features, such as roads and rivers, are prime examples of objects

that are not easily characterized by centrally-symmetric polygons. Further,

moving from area center to area center can produce errors which are difficult to

estimate and thus the method, except in very rare cases, does not produce optimal

paths. The method also espouses a beam-search strategy [Ref. 5]. Such a search

strategy omits from consideration any feature that lies outside the selected beam

width. No basis is provided for this assumption, nor is such a basis readily

apparent. Thus, this method is truly a satisficing technique. A greatly simplified

Oproblem representation is used to reduce the search effort, resulting in solution

paths that may not be optimal.

The important aspect of the homogeneous regions method is evident in its

title. An effort is made to avoid the exhaustive uniform-grid representation of the

environment by explicitly recognizing the fact that homogeneous-cost regions do

occur in the real world. Although the proposed usage of this observation does not

seem feasible, an important contribution has been made by stating the premise.

5. The Continuous Dijkstra Technique

In his PhD. dissertation, Joseph S. B. Mitchell develops an elegant method

for solving the weighted-region problem [Ref. 42]. (Note that the work reported

in [Ref. 42] was completed independently and simultaneously with the work
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reported in this thesis.) Mitchell's Continuous Dijkstra Algorithm (CDA) can be

applied to three-dimensional binary-case or two-dimensional general-case

instances of the weighted-region problem. In the latter instance, CDA relies on

two key concepts. The first is that a homogeneous-cost region representation of

the problem (similar to the area-cost map defined in Section I.B) is more

appropriate than a graph consisting of uniformly spaced nodes and predetermined

links. The second is that Snell's law can be borrowed from optics and applied as a

basic guiding principle for local optimization in the general problem. Snell's law

plays a fundamental role, similar to that played by the straight-line principle in

binary-case problems.

Snell's law is used in ray optics to characterize the refraction path that a

light ray follows when projected through optical media of different refractive

indices. The relation expressed by Snell's law is possible because Fermat's

Principle states that the optical path length along a light ray from some initial

point to some terminal point must be an extremum [Ref. 43]. Without providing

all the details necessary to adapt Snell's law to the weighted-region problem

(which is the subject of Chapter IV), we note that there is a similarity between

the two problem domains. Equating homogeneous-cost regions to optical media,

the cost of passing through a region to refractive indices, and minimum-time

paths to minimum-cost paths makes the similarity evident. Specifically, suppose

that there is a flat sided, glass container partially filled with water and that a

pencil is suspended in the container so that it is partially under water. Looking at

the pencil through the glass, it appears that the pencil is "broken" at the point

where it enters the water. Snell's law explains this appearance by stating that the
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paths followed by light rays "bend" every time they intersect a media allowing a

different speed of light. Air and water are the media in this example.

The amount of "bend" is determined locally by two angles. 01 and 0 and

two indices of refraction, r, and r 2. Snell's law states that the relation

r1 in(61) = r2 in(02)

must hold at each bend point. (Snell's law is illustrated several times in this

thesis. See Figure 55 in Section IV.C for an example where reciprocals of

refractive indices are used.) Let B denote the boundary between the two media

having different refraction indices and let N denote a normal to B through the

point where the ray of light strikes B. 0, is the angle between the light ray and N

in the medium with index r1 and 0, is the angle between the light ray and N in

the other medium.

Reliance on Snell's law is intuitively appealing for the weighted-region

problem. Suppose that point PL is in a low-cost region and PH is in a high-cost

region. The optimal path between the two points must be some perturbation (i.e.,

warping) of the straight line between them that trades increased distance in the

low-cost region for decreased distance in the high-cost region. If B is the boundary

between the two regions, the distance tradeoff is achieved by "bending" the path

towards a normal to B in the high-cost region and away from the normal in the

low-cost region. In Chapter IV. we prove the applicability of Snell's law to the

weighted-region problem.

The first requirement for using CDA is that each homogeneous-cost region

must be triangularized: each polygon defining a region must be broken up into a
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set of spatially disjoint triangles. Given the triangularization and a starting point,

the CDA applies Dijkstra's algorithm (the uniform-cost strategy) and Snell's law

to create a planar subdivision of the representation. The subdivision stores

information so that finding the optimal path from the start to any point on a

triangle boundary requires little more than indexing the correct answer.

Greatly oversimplifying, CDA uses Snell's law to create disjoint "intervals

of optimality" on triangle boundaries that are characterized by "wedges" of

minimal-cost paths from the start to that boundary. Snell's law can be used to

find the single minimum-cost path within a wedge. This cost is used in place of

the (known) node-to-node accrued cost required to execute Dijkstra's algorithm.

That is, the cost is used to define minimum-cost wedges (in place of paths) from

the start to intervals of optimality (on triangle boundaries) that are progressively

more costly (conceptually, farther away) to reach. Relying on the dynamic

programming flavor of Dijkstra's algorithm, the algorithm is continued until the

minimum-cost wedge for each interval of optimality on every boundary in the

problem representation has been found. Thus, at the conclusion of the algorithm,

wedges containing the optimal path from the start to every point on all triangle

boundaries have been characterized and stored. Given a specific goal, the optimal

path can be found by iteratively solving Snell's law within the correct wedge.

The work reported in [Ref. 421 marks a large conceptual advance over

other techniques applied to the weighted-region problem and deserves a fuller

explanation than has been provided. We avoid discussion in greater detail for two

reasons. First, many of the basic principles used in the CDA are also fundamental

to the solution presented in Chapters IV and V of this work and there is no need
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to discuss the same issues more than once. Secondly, the CDA was developed

from within the operations research community and is thus primarily oriented

towards establishing a firm mathematical foundation. A principal contribution of

the work in [Ref. 42] is the establishment of worst-case time and space bounds for

the CDA. The algorithm has time complexity O(n 7 L) and space complexity

O(n 3) where n is the number of boundaries in the triangularization and L relates

to precision. To achieve these bounds, the CDA is not constructed for optimal

time and space performance in the average case. [Ref. 42] states that some

implementation choices were based solely on the need to establish worst-case

order classes. The procedure that iteratively solves a given Snell's-law problem is

a primary example.

Clearly, establishing a firm mathematical foundation is an important

S contribution. This having been established, we focus on improving the average-

case performance of a Snell's-law-directed solution to the weighted-region

problem. There are differences caused by the two approaches. Note that CDA

relies on an uninformed strategy, the dynamic programming paradigm as

embodied by Dijkstra's algorithm. Chapter V discusses a solution based on an

informed strategy, A* search. Although worst-case performance is more difficult to

predict, A* search normally performs better than does uniform-cost search (i.e.,

Dijkstra's algorithm). Recall from Table 4 that A' behavior degenerates to

uniform-cost search in the absence of heuristic information (i.e.. when the lower-

bound evaluation = 0). This example also evinces the importance of heuristics

and pruning criteria to the methods described in Chapter V. Thus, for these

reasons, we prefer to discuss fundamental issues in an appropriate context.
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6. Summary

The general-case weighted-region problem can be solved, although the

Snell's-law-based method used in the CDA is the only technique that provides a

high degree of solution path accuracy. The wavefront-propagation method relies

on a finite, exhaustive graph while Snell's-law-based methods utilize dynamic

graphs. The more accurate solution paths generated by the Snell's-law-based

method do not suffer from digital bias. The order classes of the Snell's-law-based

and lattice-based methods are fundamentally different and the average-case

performance of both methods can be improved.

G. SUMMARY

From the previous discussions, we have seen that a solution technique for the

general-case weighted-region problem will have several key properties. First, there

must be provisions to account for the interaction of subproblems because failure

to do so leads to non-optimal solutions such as those provided by the simple

localized-improvement model. Specific domain knowledge can been employed to

prevent these difficulties as is the case in the VGraph model. Here. knowled i,

that, in the binary-case, turn points on the optimal path must coincide with

obstacle vertices leads to the exhaustive decomposition of the problem into a

graph of obstacle vertices which ,'an he intelligently searched. i c it-ctnpiti i

is possible in the binarv-ca etitle -o le ,'hafn ,fipiirCati

Straight-Line implies Shortest- Distance imvpri e, Least- ( "oa

We have seen that the verity of such an implication rests on a uniforxi-rot lw.itig

associated with all traversable areas This miiforri-ct pre:iv" i- *tr, npphca ,,
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in the general-case weighted-region problem. Thus, the analogous problem

decomposition for the non-binary case leads to the imposition of a uniform lattice

structure as in the wavefront-propagation technique. Again, an intelligent graph

search can be conducted to find an optimal solution. The salient difference is that

an unintelligent problem representation limits the accuracy of the search strategy

and leads to problems of combinatorial explosion, accumulation of error, and a

multiplicity of solutions which appear to represent equal-cost solution paths in the

physical environment because they all have the same (digital) cost in the

representation. The homogeneous regions approach attempted to establish a more

intelligent problem representation by grouping similar points together to form

regions. However. this "echnique aiso fails To accurately solve the general-case

weighted-region problem due to poor representational robustness (not all physical

world features can be adequately modeled) and the lack of an appropriate

.trht-line hypothesis to guide search (moving from region center to region

center is inadequate charactenize optimal-cost solution paths). Examination of

the binarv-c techniques also indicated that a dynamically created graph can

a ",rat, rticr.enc', )N tvoitinv wa.stefui 'omputations when the ost of

graph creation cannot he amortized). The Continuous Dijkstra Algorithm

combined rhese la&t ohbervarions. proposing Snell's law as an underlying principle

",r "~- Ie' " t , -nil' ,aw IC- - ;" 'Ocai )pTrmaiit-y criterion.

SI-lLK 'JJiUA.: I Ik, -; j ' n "laT vR, law fiscussed exhibit several

principles They make use of both domain knowledge and procedural knowledge.

Ii f i0 'A .':1 h r.di- ,.1(rf pro,ieri, rhf'%' types of knowledge correspond to

,op,)vraiphix, vai0%,W',(gt atn, knoAletige of agent capaoiiities the agent that will
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execute the planned solution path). Human-like planning also has an

opportunistic element. Although completing multiple tasks at one time is not a

component of the weighted-region problem, one can view special cases of terrain

features as presenting opportunities for problem decomposition. We have used the

example of a bridge as presenting such an opportunity. This concept generalizes

to the appearance of a corridor through an otherwise impenetrable obstacle. A

simple example is a door in a building. A more important example is the

occurrence of a single road through a densely wooded and treacherous mountain

area. A suitable solution technique for the weighted-region problem must be able

to achieve opportunistic decomposition by recognizing similar situations. Another

useful aspect of human-like reasoning is that it is multidirectional. Moreover.

directionality is intelligently specified. The wavefront technique is

multidirectional, however, omnidirectional search is not an intelligent strategy.

Bidirectional search has often been cited as a good strategy due to its limiting

properties [Ref. 2,5,16].

The wavefront technique would benefit from bidirectional search in combating

combinatorial explosion. The number of nodes examined in this technique is

roughly proportional to the area of a circle describing the wave boundary. The

2
area of a circle is 7rr . If waves were propagated from both the start and goal, the

sum of their final radii would be approximately equal to the final radius of a

single wavefront generated from the start. We know that a -b .(a-b)2 by the

amount 2ab. Thus, combinatorial explosion can be somewhat abated by a simple

bidirectional search.
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In summary, a suitable solution method for the general-cme weighted-region. problem could exhibit several properties. These include the use of a basic guiding

principle for search (such an Snell's law) that serves as a local optimality criterion.

domain knowledge, capability knowledge (knowledge about the abilities of the

agent that must execute the planned path), multidirectional (at least

bidirectional) and informed search, opportunistic decomposition, and an

intelligent problem representation. Also, the solution provided should be in some

sense optimal. We note that optimality can be measured by many factors such as

time, fuel used, visibility, danger avoidance, and so on. Another consideration is

the amount of computation required to obtain the solution. The tradeoff between

processing time and optimality must also be considered. We note that humans

are able to quickly solve path-planning problems, but not necessarily with optimal

*results. The graph-theoretic techniques that we have discussed can provide

optimal solutions (in terms of the problem representation that they use). but not

necessarily quickly. A suitable solution method for the weighted-region problem

will achieve the best traits of both.
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ITI. IMPROVING WAVEFRONT-PROPAGATION PERFORMANCE

A. INTRODUCTION

Wavefront propagation is an appealing solution technique for the general-case

weighted-region problem because it is conceptually simple, easy to implement and

flexible. Also. the method only relies on simple arithmetic operations such as

addition and subtraction. Thus, the technique is not greatly affected by numerical

errors that can often occur, when using trigonometric functions for example. As a

result, the performance of wavefront-propagation algorithms is consistent in most

circumstances. However. the simplicity of the algorithm has attendant drawbacks.

Increasing the accuracy of wavefront solutions requires increasing representational

resolution. We have noted that increasing resolution by a factor of X increases

time and space requirements of wavefront propagation by a factor of X 2. This

increase is primarily attributable to the uninformed nature of uniform-cost search.

The strategy produces optimal solutions (optimal in terms of the lattice-based

problem representation) because it is aemi-ezhaustive; it looks everywhere, but

only up to a certain point.

Improving the performance of wavefront-propagation algorithms can involve

several areas. Preceding sections discussed the difficulties associated with node

resolution, link resolution, digital bias and accuracy. All of these problem areas

arise from the information loss that occurs when the problem representation is

generated. The appropriate cure for these ills lies in the creation of a problem
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representation that has an information preserving nature, not in devising strategic

MW changes to the search algorithm. Such changes can diminish the impact of

representational problems, but control flow is fundamentally the wrong area to

address information loss. In this chapter, we do not address the problem-

representation issues. Given the representational difficulties, the algorithmic

problems involve retrieving the best solution path and decreasing time and space

requirements.

A natural question arises: Is it possible to retain the simple nature of

wavefront propagation yet overcome the semi-exhaustive character of uniform-

cost search? Replacing uniform-cost search by A* search is an effort in this

direction. However, recall that exhaustive search can be more effective than

informed strategies for tasks that have comparatively low node-generation costs.

S In the problem representation used by wavefront propagation, the cost of node

generation is low.

In this chapter, we examine the operation of the wavefront-propagation

algorithm in greater detail. Our effort is directed towards improving the

performance of the algorithm so that we can establish a baseline standard of

performance for weighted-region problem solution techniques. In Chapter VI we

compare the performance of a Snell's-law-based solution technique against this

standard. Four new versions of wavefronx propagation are introduced. These are

named the bidirectional strategy, the heuristic-selection strategy, the ellipse

strategy and the ellipse-and-heuristic-selection strategy. The performance of these

strategies are compared to known wavefront-propagation algorithms

(unidirectional, A*-based, and Af *-based). We first address methods of retrieving
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solutions once the goal has been found. Then, simple strategic alterations that

decrease the time requirements of the algorithm are introduced. These

modification have low overhead yet improve average-case performance. Finally, a

performance comparison of different strategies is provided and the results of the

comparison are summarized.

B. DEFINING THE PROPAGATION PROCEDURE

There are two principal methods of retrieving a solution path once the goal

has been found. The first is to save snapshots of the wavefront as it progresses

towards the goal. Saving a snapshot of the wavefront requires saving the exact

location of the entire wavefront at a specific instance of time. Once the goal is

reached, a gradient-tracing routine can project normals from the goal, through

each snapshot, back to the start, determining a solution path. This method has

three primary deficiencies. First, gradient tracing invites resolution problems that

affect the algorithm as well as the problem representation. Deciding how many

snapshots should be saved and at what interval is arbitrary. Secondly, computing

the intersections between normals and wavefront snapshots can increase time

requirements (a factor we wish to decrease) and, again, the amount of increase is

a factor of resolution. Note that, for each snapshot saved, the first intersection of

the normal with the snapshot must be found. (There will be two such

intersections, one on each side of the snapshot.) Even though only one path must

be found by gradient tracing, we should to avoid this post-processing step if a less

time consuming method is available. Finally. gradient tracing is not the simplest

method of recovering a solution from a uniform-cost search. The solution retrieval
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question is simply put: given a node on a path, where is the parent of that node?. This information is readily available during the search. Thus, when ancestry

information (i.e., information that specifies the parent of each node) is preserved

during the search, the solution retrieval question is answered by tracing the

ancestry of the goal node. The choice between maintaining ancestry records or

saving snapshots for a gradient-tracing routine involves the classic time/space

tradeoff. Keeping ancestry records requires storage, but the time required to

retrieve a solution is decreased. Saving snapshots also requires storage, the

amount of which is determined by the resolution. If every second wavefront is

saved, approximately one half of the nodes expanded must be stored as different

snapshots.

Preserving ancestry records amounts to maintaining backpointers during node

, expansion. When a child is generated, a backpointer from the child to the parent

must be set. (We only allow one parent for each node as discussed below.) Given

a static, eight-way connected graph, the minimal storage required to save

backpointers is 3 bits per generated node. To see this, note that in an eight-way

connected graph, the parent of any node must be one of the node's 8 neighbors.

Thus, storing one of eight directions suffices to specify a link to the parent for any

node and choosing one of 8 alternatives requires only three bits of information.

This is a minimal storage requirement. If storage is not a limiting factor.

preserving an unencoded specification of the parent is more convenient.

Specifically, storing the Cartesian coordinates of the parent or an index to an

array that contains the parent facilitates tracing backpointer links.

87



Given that backpointers are maintained, there are two times when these can

be set. A pointer may be set as soon as a node is generated or setting the pointer

can be delayed until the node is eligible to be put on the wavefront. The specific

knowledge of the wavefront-propagation operation necessary to understand this

imue is developed below.

Because there is a predetermined finite number of links (we assume 8 in the

following discussions) associated with each node, there is no need to explicitly

store any link. Instead, we can use the indices of a two-dimensional array to

provide this information. As an example, suppose that the coordinates of a node

are (X, Y). Then, the eight neighbors of this node have coordinates (clockwise

from the northern neighbor) (X,Y+I), (X--I,Y I), (X--1,Y), (XIlY-l),

(X,Y-1), (X-1,Y-1), (X-1,Y) and (X-1,Y+I). When links are implicit, the

cost of traversing a link must be associated with the node itself, just as is done in

the ADS dynamic programming model [Rte. 361. Conceptually, nodes are cells

that have static coat rates; the cost associated with passing through the node

(from any other connected node). Note that this organization means that every

link associated with a given node has identical link cost.

One way to view the operation of the wavefront-propagation algorithm is as a

simulation. Suppose that the minimal-time path is desired. Then, the wavefront

simulates all possible locations of an agent at successive instances of time. At time

zero, the agent is at the start. After one time unit passes, the agent can be in any

one of eight possible locations that are all one cost unit distant from the start.

Thus, at time zero, only the start node is on the wavefront. After one time unit

passes, up to eight nodes are on the wavefront.
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Determining whether or not a node can be placed on the wavefront depends

on the cost to traverse the node and the direction of travel through the node. If

the cost of traversing through a node is C, then at least C time units must pass

before the node can be placed on the wavefront. The direction of travel through

the node is important because of the representation. Each orthogonal neighbor of

a node is one time unit distant from that node. However, each diagonal neighbor

is V12 units distant. Suppose that the simulation is at time zero and that each

neighbor of the start node has unit cost. Then, at time 1. each orthogonal

neighbor of the start i reached and can be placed on the wavefront. However,

only 1, v 2 of the distance from the start to each diagonal neighbor can be

traversed in one time unit so that none of these neighbors are reached. Using a

factor of 1,v 2 for the diagonal links means that, in some instances, the

,propagation effect can overflou a diagonal neighbor and continue into a node that

is not an immediate neighbor of the node being expanded. That is, the wavefront

can pass entirely through a neighboring node and move on to the neighbor's

neighbor. Also note that in the explanation we have provided so far, the factors 1

and I/v 2 are tied to allowing only one time unit to pass between each

computation of the wavefront's progress. Incrementing time at a rate of \/2

instead of 1 associates a factor of v/2 with orthogonal neighbors and 1 with

diagonal neighbors. The larger time interval is desirable because it allows the

wavefront to "take longer steps" towards the goal.

To implement this simulation, a cost rate must be associated with each node.

Then, for each node on the wavefront, inspect the node's neighbors (i.e., expand

the node, generating its children) to see if they are eligible for addition to the
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wavefront. A node is eligible if it is not in an obstacle area, it has not already

been put on the wavefront, and the wavefront could pass through that node

during the current propagation increment of the wavefront location. Specifically,

for each orthogonal neighbor. retrieve the cost to traverse through that neighbor

and decrement it by V/2. If the decremented cost is equal to zero, the neighbor

can be added to the wavefront. If the decremented cost is less than zero, the

neighbor can be added to the wavefront and the decremented cost (equal to the

negative of the overflow amount) must be propagated through the neighbor until

it reaches zero. If the decremented cost is greater than zero. the neighbor cannot

be added to the wavefront. However, the fact that some progress has been made

towards reaching the neighbor must be saved. This is achieved by altering the

stored cost associated with traversing through the neighbor. (Note that to solve a

new problem, the original cost for each node must be restored.) The same

procedure is repeated for eligible diagonal neighbors except that stored cost rates

are decremented by 1 instead of by V'2. Also, assuming integral cost rates.

overflow is not an issue for diagonal neighbors. Each explored node is removed

from the wavefront when all of its neighbors have either been placed on the

wavefront or been declared ineligible for expansion.

Table 6 provides a procedural definition of expanding a node on the

wavefront. The definition assumes that the cost to traverse through a node is

stored in a two-dimensional array Cost so that if X and Y are the Cartesian

coordinates of a node, then Cot (X, Y) yields the cost rate for that node. Also, if

Cost(i,j) is less than zero, the node at coordinates (i.j) is in an obstacle region

and is not eligible to join the wavefront. The definition also depends on an
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TABLE 6
EXPANDING WAVEFRONT NODES

Expand(X,Y)

Set Neighborcount = 0
For each of the 8 neighbors of node (X,Y)

Generate the neighbor's coordinates (Xn,Yn)
if Cost(Xn,Yn) > 0

{
if (Xn,Yn) is an orthogonal neighbor

Newcost - Cost(Xn,Yn) - v/2
otherwise

Newcost = Cost(Xn,Yn) - 1
if Newcost <= 0

Neighborcount - Neighborcount + 1
Add (Xn,Yn) to the wavefront
Set Cost(Xn.Yn) = 0}

if Newcost < 0
Overflow(Xn,Yn,X,Y,Newcost)

if Newcost > 0
Cost(Xn,Yn) - Newcost

otherwise
Neighborcount - Neighborcount + I}

If Neighborcount = 8
Delete node (Xn,Yn) from the wavefront

overflow procedure to continue the propagation of the wavefront when required.

This procedure is strictly defined below. The central idea of overflow can best be

explained by using the passage of rime simulation view of wavefront propagation.

The wavefront overflows through a cell when enough total time has passed so that

the wavefront can cover the entire distance through the cell and make progress

into a neighboring cell during the same time interval.
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The procedure of Table 6 does not include any provision to set backpointers

for newly-generated nodes. This is an important consideration for those neighbors

that cannot be added to the wavefront due to high cost rates. For these nodes,

the entry in the Coat array is updated. However, the updated entry reflects the

progress made towards reaching that node from a specific parent. No other

potential-parent node can be allowed to reference the same, updated cost rate. We

store the parent of each node in an array Parent(X, Y) so that a reference to

Parent (X, Y) yields the backpointer to the parent of the node at coordinates X, Y.

The issues involved in choosing to set backpointers as soon as possible or as

late as possible should now be apparent. The earliest that a parent can be chosen

is when a node has been generated and declared eligible for expansion. Setting the

pointer at this time means that no other potential parent can be allowed to

generate this node as an eligible neighbor. Setting backpointers late requires

maintaining an updated cost for each potential parent. Then, once all the

potential parents of a node have been explored, the parent that allows the

wavefront to make the greatest amount of progress through (or to) the node can

be chosen as the permanent parent. Once the permanent parent is selected, the

backpointer can be set and the node is declared ineligible for expansion from any

other potential parent.

Setting backpointers as late as possible requires more time and space to realize

a very localized improvement. Figures 7 and 8 clearly show the difference between

the two methods. (We note that this analysis applies to propagating the

wavefront through uniform-cost areas.) Both figures depict backpointer trails

from all nodes explored during the search back to the start node (at the center).
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Figure 7. Paths Derived From Setting Backpointers As Soon As Possible

Figure 8. Paths Derived From Setting IBackpointers As Late As Possible

Both wavefronts were propagated through uniform-cost-rate nodes (and thus, no

obstacles are involved). The wavefronts were propagated for 15 time intervals.
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TABLE-";;'-- -_ ____

EXPANDING WAVEFRONT NODES & SETTING POINTERS

Expand X.NY)

Set Neighborcount = 0
For each of the 8 neighbors of node (X,Y)

{Generate the coordinates of the neighbor, (Xn,Yn)
if Parent(Xn,Yn) is undefined

Set Parcnt(Xn,Yn) = (X,Y)
if((Cost(Xn,Yn) > 0) and (Parent(Xn,Yn) = (X,Y))

{if (Xn.Yn) is an orthogonal neighbor
Newcost = Cost(Xn,Yn) - V12

otherwise
Newcost = Cost(Xn,Yn) - 1

if Newcost <= 0
{Neighborcount = Neighborcount + 1
Add (Xn,Yn) to the wavefront
Set Cost(Xn,Yn) = 0

if Newcost < 0
Overflow (Xn,Yn,X,Y,Newcost)

if Newcost > 0
Cost(Xn,Yn) = Newcost

otherwise
Neighborcount = Neighborcount + 1

}
if Neighborcount = 8

Delete node (X,Y) from the wavefront

for diagonal neighbors, and relying on integral cost rates, means that overflo%

never occurs through diagonal neighbors. Also, the overflow procedure canino*

remove a node from the wavefront. By definition, a node thronv; n i- '
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TABLE 8
PROPAGATING OVERFLOW

Overflow(Xn,Yn,X,Y.Amount){
Determine the direction of overflow by setting

Dx = Xn- X, Dy = Yn- Y
Find the node, (Xp,Yp), overflow propagates to

by Xp = Xn + Dx, Yp = Yn + Dy
if Parent(Xp,Yp) is undefined

Set Parent(Xp,Yp) = (Xn,Yn)
if((Cost(Xp,Yp) > 0) and (Parent(Xp,Yp) = (Xn,Yn))

{
Newcost = Cost(Xp,Yp) + Amount
if Newcost <= 0

{
Add (Xp,Yp) to the wavefront
Set Cost(Xp,Yp) = 0}

if Newcost < 0
Overflow (Xp,Yp,Xn,Yn,Newcost)

if Newcost > 0
Cost(Xp,Yp) = Newcost

node. If (X, Y) is the node being expanded, then only those neighbors of (X, Y)

that have an undefined parent (all nodes that have not been reached by the

wavefront have undefined parents) or already have (X, Y) as a parent need be

inspected. Clearly, the wavefront cannot be propagated back to the parent of

(X, Y). Reasoning about the direction of wavefront flow to reach (X, Y) also

eliminates other nodes from consideration. Figure 9 depicts a situation where the

wavefront has been propagated from node P to node N and N is currently under

expansion (for illustrative purposes, Figure 9 adopts the grid of cells view of the

problem representation). For illustrative purposes, the eight neighbors of N are

labeled 1 through 7 and P. Generally, the wavefront should have reached node I
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and node P at the same time. If not, node 1 and node N must both have node P

* as a parent. The same situation is true regarding node 7. Also, nodes 2 and 6

must have been claimed as children by node P at the same time that the

wavefront reached node N. Thus, nodes 1, 2, 6, 7 and P must already have parent

nodes other than node N. This holds, regardless of node cost, since the "as soon as

possible" scheme is in use. Therefore, only nodes 3, 4 and 5 need be inspected for

further propagation from node N.

3 4 5

2 6

1++PI

Figure 9. Propagation to Neighboring Nodes

The direction of wavefront travel (from P to N in Figure 9) is important when

determining those three neighbors that can be reached by further propagation of

the wavefront. As there are eight possible directions of approach to a node, there

are eight sets of neighbors that can be reached from that node. Figure 10 depicts

each possible case. The arrows in Figure 10 denote the direction of propagation to

node N. the node under expansion. The eligible neighbors of N are enclosed by a

dark border.

Figure 11 shows the linkage pattern resulting from a wavefront propagation

when only three neighbors are inspected for possible expansion. The problem is
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Figure 10. Eligible Neighbors
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the same as was used to create Figures 7 and 8. Note that Figure 7 and Figure 11eare identical. Both strategies were executed by a C-Prolog interpreter running on

an Integrated Solutions Optimum V workstation under Berkeley UNIX, System

4.2. The three-neighbor wavefront-propagation search required approximately

25% less time to complete than the eight-neighbor strategy used to create Figure

7. C-Prolog does not support array data structures. List structures are normally

used in their place and searching through a list is more time consuming than

directly accessing an array element. Table 9 presents a procedural definition of

expanding a node while inspecting only three neighbors. This definition

substitutes one array reference for the inspection of five neighbors (for eligibility

to join the wavefront) when compared to the procedural definition in Table 7.

0

Figure 11. Three-Neighbor Wavefront Backpointer Pattern

In C-Prolog, retrieving the ancestry information is more expensive (in time)

than it would be in most languages supporting arrays. Thus. the 25% reduction in

execution time is conservative. Note that the definition of Table 12 requires two
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TABLE 9
3 NEIGHBOR NODE EXPANSION

Expand(X,Y)
(Set (Xp,Yp) = Parent(X,Y), Dx = X - Xp, Dy Y - Yp
if Dx = 0

{F1 - Sub-expand(X-1,Y+Dy,X,Y,1)
F2 = Sub-expand(X,Y+Dy,X,Y,v'2i)
F3 - Sub-expand(X+1,Y+Dy,XY,1)

else if Dy = 0
{F1 Sub-expand(X+Dx,Y-1,X,Y,1)
F2 =Sub-expand(X+Dx,Y,X,Y,v'2)j

F3 =Sub-expand(X+Dx,Y+1,X,Y,1)

else
{F1 =Sub-expand(X,Y±Dy,X,Y,v'i-)

F2 =Sub-expand(X+Dx,Y+Dy,X,Y,1)

F3 =Sub-expand(X+Dx,Y,X,Y,V'i)

if (F1 + F2 + F3) = 3
Delete (X,Y) from the wavefront

Sub-expand (X ,YXp,Yp,Amount)
{if Parent(X,Y) is undefined

Set Parent(X,Y) = (Xp,Yp)
if((Parent(X,Y) - (Xp,Yp) and (Cost(X,Y) > 0))

fNewcost = Cost(X,Y) - Amount
if Newcost <= 0

{Add (X,Y) to the wavefront
Set Cost(X,Y) =0

Returnvalue=1

if Newcost < 0
Overflow(X,Y,Xp,Yp,Newcost)

if Newcost > 0
f{Cost(X,Y) = Newcost
Returnvalue = 0

else Returnvalue = 1

Return(Returnvalue) ________ ___________
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procedures. Procedure Ezpand determines the eligible neighbors. Procedure

Sub-ezpond propagates the wavefront, if possible, and returns a value so that

Ezpand can remove the node from the wavefront when necessary.

C. DECREASING WAVEFRONT-PROPAGATION TIME REQUIREMENTS

In this section, we introduce two new concepts that can be used to decrease

the time required by wavefront-propagation algorithms to arrive at a solution

path. First, we show how bidirectional search can be used in this algorithm.

Secondly, we introduce the notion of a global bound which limits the portion of

the lattice that must be searched.

1. Bidirectional Strategies

In Section II.G we noted that a bidirectional strategy has the potential to

Adecrease the number of nodes expanded during wavefront propagation. This

analysis was based on assuming a circular shape for the wavefront that occurs

when it propagates through uniform-cost areas. (We note that circularity is not

required; it simply makes the analysis less complicated.) When the assumption

holds, the wavefront at solution approximates a circle of radius r where r is the

cost of the path from start to goal. Suppose that, instead of propagating one

wavefront from the start, two wavefronts are propagated, one from the start and

one from the goal. At solution, the two circles have radii r. and and r -- r

The number of nodes expanded is approximated by the area of the circle. Clearly,

the sum of the areas of the two smaller wavefronts is less than the area of the

single, larger wavefront.
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There is some overhead associated with bidirectional wavefront

propagation and, if the objective of exploiting bidirectionality is to reduce time,

that overhead should be small. The expansion procedure defined in Table 9 is

low-level. In the definition, we have not provided a way for the procedure to

know when the goal has been found. Thus, there must be some higher-level

routine that selects nodes on the wavefront for expansion and determines when a

solution has been reached. In standard unidirectional wavefront propagation, a

solution is available when the goal node is reached through a neighboring node

that is on the wavefront. Thus, whenever an eligible neighbor is generated, its X

and Y coordinates must be compared to those of the goal. If the coordinates

match, the goal has been found and the low-level procedures (such as Expand and

Sub-expand in Table 9) can set a notification flag. In total, detecting a solution

requires three comparisons for each expanded node; one against a flag value and

one each for the X and Y coordinates of the goal.

This simple termination criterion does not work when using a bidirectional

strategy. Instead, a solution is available when the two wavefronts touch. However,

using some of the structures already available, determining wavefront intersection

is also an easy task. Suppose that we initialize the Cost array entry for the start

node to be 0 and for the goal node to be -1. Then, each time a node is added to

the wavefront (when its cost is -10), we set the Cost array entry for that node to

be equal to the entry for its parent node (instead of an arbitrary zero cost). The

two wavefronts touch when an ineligible neighbor node has a Cost array entry

different from that of the node under expansion. A slight complication arises in

that we have already assumed that unreachable nodes (i.e., nodes inside obstacle
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areas) are identified by negative costs. Assume these nodes all have costs of -2.

Then, if a node ineligible for expansion has a Cost array entry greater than -2 and

different from the entry for the node under expansion, a flag can be set signaling

that a solution is available. Again, three comparisons are required to detect a

solution. However, two comparisons involve inequality (i.e., greater than and not

equal) and there is an added level of indirection since array entries must be

compared. Thus, there is a slight machine-dependent increase in overhead to

conduct a bidirectional search. The performance of bidirectional and

unidirectional strategies are compared in Section III.D.

Using a bidirectional strategy also allows some flexibility. It is not

necessary to expand both wavefronts uniformly. The presence of obstacles tends

to decrease the time requirements of wavefront propagation because fewer nodes

S are eligible to join the wavefront, keeping the size of the wavefront small

(relatively). Propagating a wavefront out of a "box canyon" defined by obstacles

is less expensive than propagating the wavefront in 360 degrees. Thus, when using

a bidirectional strategy, the algorithm can take advantage of this fact and select

the smaller wavefront to expand during each time cycle. Again, there is some

overhead in determining the smaller of the two wavefronts. If the wavefronts are

maintained in separate one-dimensional arrays, simply comparing the indices of

the last used array positions provides the relative size of the two wavefronts.

Thus, the time overhead is low. This strategy is referred to as the heuristic-

selection method in the performance comparisons of Section III.D.
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Using more than two separate wavefronts does not seem to be a viable

option. For each path-planning problem, there are two points that are known. a

priori, to be on the optimal-cost solution path. These points are the start and

goal. A characteristic of the weighted-region problem that makes it difficult to

solve is that it is not readily decomposable. Intermediate points that must also be

on the solution path are not apparent in most cases. Since propagating wavefronts

from points not on the optimal solution path is wasted effort, using more than

two wavefronts is not helpful.

A final comment on bidirectional wavefront propagation relates to the

maximum error in the cost of a solution path. Recall that the maximum (cost)

error in a solution derived from a unidirectional strategy is 8% (see Figure 5) and

that this error occurs when the goal is a midpoint of a chord approximating a 22.5

degree arc. In bidirectional wavefront propagation, the maximum error occurs

when the two wavefronts touch at midpoints of chords, both approximating 22.5

degree arcs. This situation can arise when the physical relationship of the start

and goal is similar to that depicted in Figure 12 (where the start is labeled s and

the goal g). Let t=r 1 -r 2 (as in Figure 12) be the true cost of the s-to-g path.

From previous discussions (Section II.2.E.a) we know that the chords touch when

61=1.08d 1, 62=1.08d,, p-=1.08rl and p2 =1.08r 2, as in Figures 12 and 13. In Figure

13, a solution having cost p, -p,=1.O8r, -1.08r,=1.08t is reported. Thus, the

maximum (cost) error in the bidirectional strategy is. again, approximately 8%.

Therefore, the maximum error in the cost of a solution path is not increased by

using bidirectional search.
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Figure 12. A Solution Should Be Reported

When "Perfect" Wavefronts Touch

eP

Figure 13. A Solution Is Reported When Approximating

Chords Touch
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2. Physical Bounds

The semi-exhaustive nature of uniform cost search has been noted. The

procedure attempts to examine every neighboring node within a 360 degree arc

about the start. Clearly, those nodes neighboring the start that lead away from

the goal are less likely to be on the solution path than those nodes that are close

to a straight start-to-goal line segment. The heuristics employed by informed

strategies attempt to recognize the likelihood that an arbitrary node may be on

the solution path. As an example, the Euclidean distance between two points

(nodes) can be used to provide a good lower-bound estimate on the cost of a path

between those two points. However, measuring Euclidean distance requires an

expensive square root function. Also. informed strategies use ordered data

structures (possibly linked lists stored as arrays such that each array entry

contains a data element and a pointer to the next data element), introducing .-

more overhead. The costs of using evaluation functions and maintaining ordered

lists must be paid each time a node is added to the wavefront. When resolution is

high, at the pixel level for example, overhead costs can mount quickly.

A one-time overhead heuristic is achieved by physically bounding the

search space before the search process begins. Suppose that there is a feasible

solution path (a start-to-goal path that stays out of obstacle areas) to the

weighted-region problem. Let the cost of the feasible solution path be C. The

optimal-cost solution path must. by detinition. have cost less than or equal to C.

Also, there must be some optimal cost rate, Co. associated with the problem

representation. Given C and Co there must he a distance Db such that a path

covering Db at cost Co has cost equal to C ,, Db= C P/CO.Since the optimal-cost
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solution path must have cost less than or equal to C,,, it must travel a distance

less than or equal to Db. Thus, Db is a bounding distance. An ellipse that has the

start and goal as foci and constructed such that, for each point on the ellipse

boundary, the distance from the start to that point plus the distance from the

goal to that point is equal to D, must contain all start-to-goal paths having

distance less than Db. Thus, the coordinates of the ellipse boundary form physical

limits on the location of any part of the optimal-cost solution path. (Note that

this is a slightly different version of the idea used in the branch-and-bound search

strategy.)

Wavefront propagation can make use of such a physical bound by

considering the ellipse boundary as an obstacle. Using this convention, the

wavefront is never allowed to propagate outside of the ellipse. Also, there is no

additional overhead incurred during the search since there is already a

requirement that each node be inspected for eligibility. All overhead is incurred as

a one-time cost, before the search begins. A binary-case algorithm, even simple

localized-improvement, can ignore the cost rates for passable areas and find a

feasible solution on which to base ellipse construction. The comparisons of

Section III.D include data for a strategy based on bidirectional search within a

limiting ellipse (which we denote ellipse).

D. PERFORMANCE COMPARISONS

This section presents the results achieved by different variations of the

wavefront-propagation technique when applied to the same problems. The area-

-€ . cost map used for testing represents terrain at Point Lobos, California. The map
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features a ternary terrain classification scheme, i.e., each point in the environment

is either impassable, traversable at high cost or traversable at low (optimal) cost.

The cost-rate ratio of high-cost traversable areas to low-cost traversable areas is

2:1. The area-cost map was designed to be appropriate for the Adaptive

Suspension Vehicle, constructed at The Ohio State University [Ref. 441. The

actual terrain was physically inspected in order to manually assign cost rates to

regions on the area-coot map that would reflect the capabilities of this vehicle.

In this section, we present the time required and nodes (pixels) explored by

each of six different wavefront strategies to solve the same problems. The first

four methods, unidirectional, bidirectional, heuristic-selection and the ellipse

(bidirectional without using heuristics) method have been discussed. Wavefront

strategies relying on the A * and A.* algorithms are also included in the

comparison. The A* and A,,* variants both rely on a heap data structure to

maintain the ordered Open list. Both strategies use Euclidean distance at optimal

cost as the lower-bound evaluation (the h(n) function). All routines run in

compiled C on a multiuser, IRIS 2400 workstation under UNIX System V. The

time results do include some CPU time dedicated to IRIS graphics tasks.

However, the graphics overhead is approximately the same for each method and if

any bias is present, those strategies expanding fewer nodes are favored. Thus, the

time measures can only be considered as indicative of relative performance. The

time performance cited for the ellipse method does not include the time required

to achieve an initial feasible solution (as this portion of the strategy was

accomplished manually and provided to the test algorithm). Here, initial solutions

are simple binary-case solutions where the cost of traversing regions is ignored.
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Thus, the shortest-distance paths that do not intersect obstacle areas are used as

initial solutions. (Feasible binary-case solutions are not difficult to generate and

thus do not require much computation time.) Thus, while the timing marks for

the ellipse method are not totally accurate, they are indicative of the method's

relative performance.

Figures 14 through 43 depict the results obtained by each strategy. (Note

that these figures are all placed at the rear of this chapter.) In these figures, the

darkly shaded polygons represent obstacle areas. Lightly shaded polygons depict

high-cost traversable areas and the unshaded background area is the low-cost

traversable area. The figures show the location of the wavefront(s) at solution and

the solution path. The solution, start, goal and wavefront(s) are usually labeled.

Some labels are omitted for clarity of individual figures. For bidirectional

strategies, the wavefront centered at the start is labeled s wavefront; the

wavefront emanating from the goal, g wavefront. The figures reflecting ellipse-

based strategies also show the limiting ellipse as a heavy line. The solution path is

a heavy line between two circles, each of which contains either the start or goal.

Each node remaining on the wavefront at solution is shown as a single darkened

pixel. The pixels form line segments describing the entire wavefront(s), which may

be disconnected. The disconnected portions arise when the wavefront cannot be

propagated through some area. an obstacle area for example.

Figur 14 through 19 depict solutions to the first problem. denoted Problem

A. Figures 15 and 16 are very similar, reflecting the inability of the heuristic-

selection method to improve performance on this problem. This 's because the

high-cost region near the start and the edge of the map near the goa' tend to keep

iU
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both the s and g wavefronts expanding at close to the same rate. Also, note the

search pattern of AE * depicted in Figure 19. This strategy allows some nodes to

be skipped over so that the wavefront is not contiguous. Some unexplored nodes

remain in the interior of the wavefront. This is a general behavior pattern for the

A,* algorithm that is reflected in several figures. Figures 20 through 25 depict

solutions to the second problem, Problem B. Again, performance is affected by the

edge of the map. Also note that the unidirectional strategy provides a different

solution path (near the goal), an effect of digital bias.

Figures 26 through 31 depict a problem where the shortest-distance path is

the optimal-cost path. The width of the high-cost region intersected by the

solution path is small enough that the region becomes inconsequential. In this

problem, the start is located in a "box canyon" and the heuristic-selection method

does affect performance. Also note that the remaining wavefront for the A*

strategy is so small that the solution path completely hides it from view. However.

the A. * method also yields the least-accurate solution.

Problem D solutions are depicted in Figures 32 through 37. Again, note the

inability of the heuristic-selection method to improve performance. Also. there is

a large difference between the search patterns produced by A(* in Problems C

and D. Traveling longer distances through high-cost regions confuses this strategy.

Figures 38 through 43 present solutions to Problem E. Note the great increase

in the area covered by unidirectional search, due to the higher-cost solution path.

Also, the heuristic-selection method has a great effect on this problem. It produces

a very different search pattern from the simple bidirectina strategies.
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TABLE 10
PERFORMANCE COMPARISON

Problem Figure CPU Time Nodes Order of
Strategy Number Number (seconds) Expanded Performance

A 14 35 4058&5 6
Uni- B 20 39.65 46833 5
directional C 26 5.46 7564 5

D 32 23.13 29668 5
E 38 65.95 75149 5
A 15 23.23 25946 4

Bi- B 21 20.15 25345 3
directional C 27 7.57 10363 6

D 33 18.43 22198 3
E 39 37.05 44429 4
A 1622.73 2723

B 22 17.38 22575 1
Heuristic- C 28 4.70 6612 4
Selection D 34 17.95 21741 2

E 40 28.62 35172 2
A 17 13.80 14546 1
B 23 18.18 23117 2

Ellipse C 29 2.22 2964 2
D 35 5.68 7105 1
E 41 14.30 15335 1
A 18 19.50 4736 2

B 24 36.83 8609 4
A* C 30 3.60 1024 3

D 36 19.70 4604 4
E 42 30.05 7155 3
A 19 27.71 3042 5
B 25 84.18 4623 6

At* C 31 1.07 360 1
37 80.42 3813 6P E 43 89.28 2935 6

The exact time and space performance of each strategy on each problem is

presented in Table 10. The table contains a column labeled "Order of

Performance" that rank orders each strategy, 1 through 6, by time required to

solve each problem. In Table 11, the mean time to expand a single node for each

method is tabulated. Table 11 also presents a mean rank order of performance in
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TABLE 11
MEAN PERFORMANCE

Mean Node Mean

Expansion Standard Order Standard
Strategy Time (sec) Deviation (1- 6) Deviation

Unidirectional 0.0008 0.000081 5.2 0.45
Bidirectional 0.0008 0.000060 4.0 1.22
Heuristic-Selection 0.0008 0.000065 2.4 1.14
Ellipse 0.0008 0.000091 1.4 0.54
A* 0.0040 0.000327 3.2 0.71
A 1 0.0163 0.016738 4.8 2.17

which the ellipse method (bidirectional without heuristics) rates as the best while

the unidirectional strategy is the worst performer. The table also presents

standard deviation information. Based on this data, the At * method is the least-

consistent method, both in time to expand a single node and in mean rank order.

We note that the sample size used here is very small. However, the problems have

been chosen to represent a wide class of typical problems and thus should be

generally indicative of strategy performance.

E. SUMMARY

Table 10 shows that the bidirectional, heuristic-selection and ellipse methods

all have low overhead costs, comparable to that of the unidirectional strategy.

The ellipse method is the best overall performer. The heuristic-selection method is

occasionally good and when it does not speed the search, there is no performance

decrease. This statement cannot be made regarding the A* and A ' strategies.

Their high overhead is detrimental in some cases. These results confirm that low-

overhead exhaustive strategies are appropriate for wavefront-propagation

techniques.
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The results of Table 10 and 11 indicate that combining the ellipse and

heuristic-selection methods has advantages. That is, we use an ellipse to impose a

global limit on the problem and use heuristic-selection to constrain wavefront

growth within the ellipse. This method is compared against the standard ellipse

and heuristic-selection techniques in the problems depicted in Figures 44 through

52. The performance of each method is tabulated in Table 12.

TABLE 12
PERFORMANCE COMPARISON

Problem Figure CPU Time Nodes Order of
Strategy Number Number (seconds) Expanded Performance

Heuristic- F 44 8.25 9832 3
Selection G 47 18.18 23397 3

H 50 28.69 32884 2

F 45 7.97 9250 2
Ellipse G 48 15.63 19776 2

_ H 51 30.15 35476 2

Ellipse & F 46 7.61 9064 1
Heuristic- 1 49 14.41 19040 1
Selection H 52 20.33 25158 1

Note that the solutions presented in Figures 47 and 48 differ from the solution

of Figure 49. This is a result of solution path cost error. In Figures 47 and 48, the

wavefronts touch interior to approximating chords, the maximum-error situation.

In Figure 49, the wavefronts touch at chord endpoints, the minimum-error case.

Also note that the two separate paths are close in path cost. This can be seen by

the proximity of the wavefronts in both places where solution wavefronts intersect

(i.e., the lower portion of Figure 49 and in the upper portions of Figures 47 and

48).
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We note that none of the methods discussed in this chapter lower the 0(n 2)

worst-case complexity of wavefront propagation. (Where n is the number of

lattice nodes.) However, the methods listed in Table 12 improve the average-case

performance of unidirectional wavefront propagation without degrading it in the

worst case. Of all the methods, heuristic-selection within an ellipse seems to have

the lowest time requirements. Also, this method requires only a small increase in

storage space. However, it does not cure the inherent problems of wavefront

propagation. The solution paths offered by wavefront propagation are inaccurate

in terms of path cost (a topic more fully developed in Chapters VI and VII). The

inaccuracies stem from two resolution-dependent aspects inherent in the problem

representation. The first depends on the number of nodes in the lattice. The

second is determined by the connectivity, or branching factor at each node in the

lattice. The development and usage of a more appropriate problem representation ',

for the weighted-region problem is the subject of the following chapters.
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IV. PROPERTIES OF SNELL'S-LAW PATHS

A. INTRODUCTION

The preceding chapter presents a classic conceptually-simple method of

solving the weighted-region problem. This wavefront-propagation technique relies

on a specialized artificial problem representation to overcome the weighted-region

problem complexities. However, the simplifications made possible by the lattice-

based problem representation have attendant drawbacks. As noted in Section

III.A, altering the control-flow scheme for the algorithm cannot overcome the

difficulties associated with the lattice-based problem representation. Thus, the

creation of a more intelligent problem representation is desirable.

The homogeneous-cost region representation does not rely on a resolution-

dependent lattice to describe the area-cost map. Areas in the environment that

have the same cost-rate characteristics are viewed as single entities, not as a set of

discrete points. The only points that are specifically used in the representation

are those required to define region boundaries, i.e., the region vertices. Resolution

can be changed by modeling the region polygons with greater or lesser precision.

The disadvantage of relying on a homogeneous-cost region problem representation

is that a simple graph search strategy may no longer applicable. A more complex

algorithm, such as the continuous Dijkstra technique, could be required. We have

seen that Snell's law provides a suitable basis for such an algorithm. However.

some care is necessary when applying . nell's law to the weighted-region problem.
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In this chapter, we first develop the basic terminology and definitions

necessary to discuss the application of Snell's law to the weighted-region problem.

Next, the applicability of the law itself is formally established. We prove useful

properties of Snell's-law paths and develop characteristics of physically adjacent

pairs of Snell's-law paths. We present Snell's-law-based factors that serve to

constrain the search space for the weighted-region problem. Finally, we discuss

limitations in applying the law to the weighted-region problem.
0

B. TERMINOLOGY AND DEFINITIONS

This section presents basic terminology and definitions. Some terms have

already been referenced in preceding discussions. In those instances, the terms

denoted their intuitive meanings. We now present formal definitions that hold fore the remainder of this work. Figure 53 illustrates most definitions.

Agent: An agent is an entity capable traveling along the paths that represent

solutions to instances of the weighted-region problem.

Coat Rate: A cost rate is a cost per unit of distance traveled along a path. In this

thesis we consider cost rates to be independent of the direction of travel and

independent of the time that travel occurs. A cost rate is defined based on the

capabilities of a specific agent.

Homogeneous- Cost Region: A homogeneous-cost region is an polygonal area

where the cost rate is the same everywhere within the polygon. Each polygon side

demarcates a cost-change boundary so that the cost rate is different on either side

of each boundary (but always the same inside the polygon). All contiguous areas
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that have the same cost rate are grouped together into a single homogeneous-cost

, region. Thus, the polygons delimiting the homogeneous-cost regions may be either

convex or non-convex.

Obstacle: An obstacle is a polygonal area that cannot be traversed. Conceptually,

an obstacle is a homogeneous-cost region that has an infinite cost rate.

Area-Coat Map: An area-cost map is a planar thematic map (where the theme of

the map is cost rates) representing some physical area such that the area is

described by disjoint homogeneous-cost region polygons and obstacle-area

polygons. The area-cost map associates a specific cost rate with each

homogeneous-cost region.

Ternary-Cost Map: A ternary-cost map is an area-cost map that recognizes only

three distinct cost rates (assigned to any number of regions). The different cost

Orates are characterized as infinite, high and low. Obstacle areas have conceptually

infinite cost rates. Polygons are used to delimit high-cost homogeneous-cost

regions. Conceptually, the high-cost homogeneous-cost regions and obstacle

regions are superimposed on a "background" area. The background areas are

traversable at low (or equivalently, optimal) cost and are referred to as low-cost

regions or optimal-cost regions.

Start: The start is a point in the two-dimensional plane that specifies the initial

position of an agent.

Goal: The goal is a point in the two-dimensional plane that specifies the desired

(terminal) location of an agent.
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Path: A path is a connected ordered series of line segments (or equivalently, path

segments) that begins at a specific starting point and ends at a specific goal point.

Boundary- Crossing Episode: A boundary-crossing episode occurs when a path

intersects a side of a homogeneous-cost region polygon. The episode occurs at the

point of intersection. This intersection point is treated as the common endpoint

for two consecutive path segments on the path. Note that some path segments

may have a region vertex as an endpoint while not intersecting a side of a

homogeneous-cost region at that vertex. Such paths can occur for example, when

a path goes around a high-cost region. In these cases, the path does not have a

boundary-crossing episode at the region vertex.

Weighted-Region Problem: The weighted-region problem is the problem of

locating the minimum-cost path between a start and goal, given an area-cost map

that includes those two points and the optimal-cost path between them.

Specifically, let PSG be the set of all start-to-goal paths that obey Snell's law at

each boundary-crossing episode on the path such that pi E PsG Assume each p,

includes ni path segments and that a unique cost rate c j can be associated with

each path segment. Let the distance along each path segment of pi be dj. (Note

that j c [1..nj for each pi). Then the weighted-region problem that we solve is a

minimization problem:

mainp,, P;O d

j-1

Snell's-Law Path: A Snell's-law path is a path such that Snell's law is obeyed at

each boundary-crossing episode that occurs on the path. Consecutive path
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segments that do not correspond to boundary-crossing episodes are not required to

obey Snell's law.

Feasible Path: A feasible path is a path that does not intersect any obstacle

region.

Cost-Limiting Path: A cost-limiting path is a feasible start-to-goal path of

computable cost. This path provides an upper bound (limit) on the cost of the

optimal start-to-goal path.

Bounding Box: A bounding box is a rectangle that delineates the portion of an

area-cost map that must contain the optimal-cost solution path to an instance of

the weighted-region problem. The size of a bounding box is usually determined by

a cost-limiting path.

Search Point: A search point is a point in two-dimensional space that

corresponds to the goal, a vertex of a homogeneous-cost region polygon, or a

vertex of an obstacle-area polygon.

Wedge: A wedge is a portion of the area-cost map that is defined by two Snell's-

law paths having the same starting point. One Snell's-law path defines the left

side of the wedge, the other path defines the wedge's right boundary (left and

right are defined from the point of view of an observer positioned at the common

starting point and looking towards the interior of the wedge). A wedge ends. or

terminates, when the two boundary-defining Snell's-law paths intersect or

intersect the bounding box. Thus, a wedge can be described as a polygon that has

two Snell's-law paths and, possibly, a portion of the bounding box, as sides.
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Search Point Within A Wedge: A search point is within a wedge if that point is

interior to the polygon describing the wedge. Search points that are vertices of the

wedge-describing polygon are not considered to be within the wedge.

Snell's-law Path Within A Wedge: A Snell's-law path is within a wedge if it

contains a point within the wedge and it does not pass through any side of the

polygon describing the wedge. A Snell's-law path may touch a wedge-describing

polygon side without passing through that side.

Wedge Tip: The common starting point of the two Snell's-law paths defining a

wedge is the wedge tip.

Solved Search Point: A search point is solved with respect to a given wedge if the

search point is interior to the polygon describing the given wedge and there is a

Snell's-law path, also entirely within the same wedge-describing polygon, from the

wedge tip to that search point.

Unsolved Search Point: A search point is unsolved with respect to a specific

wedge if the search point is inside the wedge-describing polygon and no Snell's-

law path, entirely within the wedge, has been found from the wedge tip to the

search point.

Empty Wedge: When the polygon delimiting a wedge contains no interior

unsolved search points, the wedge is empty.

Well-Behaved Snell's-Law Path Pair (WBSP): A well-behaved Snell's-law path

pair is defined by two Snell's-law paths. The two paths are well-behaved with

respect to each other if they each intersect the same sequence of homogeneous-

cost region boundaries in the same order.
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Partial Well-Behaved Snell's-Law Path Pair (K- WBSP): Two Snell's-law paths

form a K-WBSP when they are well-behaved with respect to each other only up

through their first K boundary-crossing episodes. Note that any two Snell's-law

paths are trivially 0-WBSP when they share the same starting point and have no

other boundary-crossing episodes in common. Note that we differentiate between

WBSP and K-WBSP. If two Snell's-law paths form a WBSP then they do not, by

definition, form a K-WBSP for any K. (In Figure 53(b), the 2 Snell's-law paths

are 2-WBSP.)

Explored Wedge: An explored wedge is an empty wedge defined by two Snell's-

law paths that form a WBSP.

K-Explored Wedge: A K-explored wedge occurs when the two Snell's-law paths

defining the wedge form a K-WBSP and the wedge contains no unsolved search

points up to the Kth boundary. Then any new Snell's-law path constructed

within the wedge will form an N-WBSP with each of the extant wedge-defining

Snell's-law paths, where N > K. Note that any two Snell's-law paths having the

same starting point trivially define a O-explored wedge.

Closest Unsolved Search Point: Each non-empty wedge contains one or more

unsolved search points. Each wedge must be K-explored (for K > 0). The closest

unsolved search point is the unsolved search point that is closest to the Kth

boundary (or point in some cases such as K = 0).

Approach Path: When the wedge tip is not the start, there must be some known

approach path, leading from the start to the wedge tip. Any Snell's-law path
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within the wedge must include the approach path as its initial portion. An

approach path is defined relative to a specific wedge. %-N!

C. DERIVATION AND STATEMENT OF SNELL'S LAW

Consider the problem of finding the optimal-cost start-to-goal path in a simple

case. Figure 54 depicts a situation where the start is located in a low-cost

homogeneous-cost region, the goal is inside a high-cost homogeneous-cost region

and a single region boundary, denoted boundary B, lies between them. Thus, in

Figure 54, U1 is a lower cost rate than U2. Let the series of path segments from

the start to point P to the goal represent the optimal-cost start-to-goal path. This

least-cost path is a perturbation of the straight-line start-to-goal path that trades

increased path length in the low-cost (Ul) region for decreased path length in the

high-cost (U2) region. To find the optimal-cost start-to-goal path, we must find ,,. .

the point P on boundary B that minimizes path cost by maximizing the

advantage of the tradeoff.

We can write an equation that expresses the cost of the two-path-segment

path in Figure 54. Let C denote path cost. Then. the equation describing C for

Figure 54 is a sum of terms as below:

( l2 _ 12) 
'/2 (x22 _, y22) 1/2

C
Ut U2

Note that, as shown in Figure 54, yl and y2 are constants. Thus, we can take

partial derivatives of C with respect to z and z2 and set them equal to zero to

characterize a minimum-cost path between the start and goal.
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Since both partial derivatives are set equal to zero, we can write:

U1( Z Y1 / U2( z2+ ±2 1/2 (1)

Note that the start-to-goal path can also be characterized in terms of the angles

that it makes with a normal to boundary B through point P. In Figure 54, these

angles are denoted 81 and 02. Since the sine of an angle in a right triangle is equal

to the length of the side opposite the angle divided by the length of the triangle

hypotenuse, we can express the sine values of 81 and 82 as:

sin(81) = /2

1 12 + Yl1

z2
sin( 2) = 1/2

(:2 + 1221

These sine values can be substituted into equation (1), resulting in a simplified

equation that describes the minimal-cost start-to-goal path:

sin(01 ) sin(0 )

UI U2

This final equation is exactly Snell's law [Ref. 40, p. 147]. We note that the

relation expressed by Snell's law is entirely a local relation. It is easily shown, by

induction, that a minimum-cost path between two points that involves an
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arbitrary number of boundary-crossing episodes must obey Snell's law (locally) at

, each boundary-crossing episode. Thus, Snell's law is a local optimality criterion

for solving the weighted-region problem. (Also see [Ref. 3, p.101 for a similar

proof.) Figure 55 illustrates Snell's law.

D. CONVEXITY OF THE SNELL'S-LAW PROBLEM

We have demonstrated that applying Snell's law when moving across polygon

boundaries defining different cost regions allows the solution of a minimization

problem involving Euclidean distances divided by the appropriate cost

coefficients. (Note that we are using cost reciprocals, an arbitrary decision.) We

now show that this minimization problem is convex. Figure 56 depicts a typical

instance of the problem that we wish to solve. Formally stated, the problem is:

8(Z2zzi)2_+(y2 _y A  /2 (3_2 1/2 (Z4_Z3)2 1/2

C1  C 2  CI
Subject To:

A Iz 2 +BlY 2 +C 1
= 0

A,,x3 4B,,ij,+C,=0

where A z ±Bly+Cl=O is the equation of the lower region boundary and

A 2z+B 2 y + C 2 =0 is the equation of the upper region boundary. The variables are

X2, z3, Y. and y3. The coordinates z, Y1, z 4 and Y4 are constant. the coordinates

of the start and goal location.

First, consider the convexity of the Euclidean-distance problem involving only

a fixed point (such as the start or goal), a point on a region boundary (i.e.. a line)

and a single cost rate. c. (The variables for this problem are z:, and y., the
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coordinates for the point on the region boundary.) This problem is:

( (zI-z2) 2 '(Y -- 2)1 1 / 2  .

C

Subject To:

Alz 2 +BIy 2 +C=O

Note that Euclidean distances are always positive. Therefore, the problem is

restricted to the positive quadrant. In this case, minimizing the square of the

function is an equivalent problem. Thus, the problem objective function can be

simplified to:

min

Note that the function f(z 1 ,z 2)=(z 1 -z 2)2 maps the reals to the positive reals.

Therefore, we consider this function as equivalent to g(X)=X 2 where X=z-z 2.

It is well known that g(X) = X 2 is a convex function (in terms of X, see [Ref. 13]

X2  2

for example). Therefore, f(X)=- is convex. Therefore, f(z,y)= is

convex.

Because the addition of two convex functions produces another convex

(z 2 -- Z) 2 +(y 2 -- 2

function, is convex. Therefore. the Euclidean-distance
C

function for our simplified problem is convex. The original objective function, as

depicted in Figure 56, is also the sum of convex functions. Therefore, this

objective function is convex. The constraints for the problem are linear by
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definition and are thus trivially convex (i.e.. both convex and concave). Therefore,

the problem is the minimization of a convex objective function subject to convex

constraints.

Adding one region boundary to the problem results in the objective function

changing by the addition of a convex function and the constraints being

augmented by another linear (convex) function. Therefore, the convex nature of

the problem holds, regardless of the number of boundary-crossing episodes

involved.

Convexity guarantees that any locally optimal-cost solution will have

globally-optimal cost. However, if region boundaries are line segments instead of

(infinite length) lines, the solution is only guaranteed to be the optimal-cost

solution path among all paths that intersect the same boundary. Other paths,

that go around the boundary for example, may have lower path cost. As the

minimum-cost formulation above is equivalent to finding the Snell's-law path

between two points, the latter problem shares these properties, including

convexity (with respect to specific boundaries).

E. DEVELOPING PRELIMINARY RESULTS

We now develop several lemmas that characterize Snell's-law paths. The

lemmas implicitly rely on the convexity of the problem. The first three lemmas all

assume Snell's-law paths consisting of only two line segments and having one

boundary-crossing episode. The results are later extended to arbitrary Snell's-law

paths. For notation, let A-to-B denote a -traight-line path from A to B.
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Lemma 1: Given an initial Snell's-law path, R, that has a single boundary-

crossing episode (over the entire length of the path) involving boundary B of a

homogeneous-cost region at point P, then any other Snell's-law path, RL. that

also has only one boundary-crossing episode, intersecting boundary B at some

point to the left of P, will lie entirely to the left of R (i.e., both below and above

boundary B), and any Snell's-law path, RR, that has a single boundary-crossing

episode, intersecting boundary B at some point to the right of P, will lie entirely

to the right of R (both below and above boundary B).

Proof: There are three cases.

Case 1: (See Figure 57) R intersects B so that its angle of incidence is normal

to B. In this case, since R obeys Snell's law about boundary B, R is a straight

line. No heading change along R occurs either before or after intersection with

boundary B. Clearly, if some path RL intersects B at a point to the left of P, then

the angle of incidence between RL and the normal to B must be measured in a

counter-clockwise direction (again, as specified by Snell's law). According to

Snell's law, the exit angle (i.e., the angle of refraction) of path RL will also be

measured in a counter-clockwise direction. Therefore, RL always moves away from

R to the left and must lie entirely to the left of R.

If some Snell's-law path RR intersects B at a point to the right of P, similar

reasoning holds, except that the angles are measured in a clockwise direction and

the Snell's-law path R. moves away from R to the right (see Figure 58).

Case 2: (See Figure 59.) R intersects B at point P so that its angle of

incidence is measured in the clockwise direction from the normal to B. Sulppose

170



RL R (original path)
(R is perpendicular to B)

Counter-
Clockwise
Measures

P) Boundary B

Start

Figure 57. Illustration for Lemma 1, Case 1, A
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Figure 59. Example for Lemma 1, Case 2, Part 1 Where
P' is to the Right of P and R has a Clockwise Measured
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that some Snell's-law path R. intersects B at point P' where P' is to the right of

, P. Clearly, if P' is to the right of P then

Note that:

/i1 + a I= 90, 0i2+#1=9o

0 2 +Cf1<#1 +a1

a21<~281

According to Snell's law:

u sin( a)

U -sin(a 1 )
U1

U sin($2  si~ 1

U
1

a1 1 implies sin(a,)<sin(81 )

u2sin(a 2) U2sin (#2)
thus,

U1I

sin(a 2)<sin(82),

a 2<021

and therefore, R is left of R

Now suppose that some Snell's-law path RL intersects B at P' where P' is to

the left of P (see Figure 60). By the case above, Snell's-law path R lies entirely to L

the right of Snell's-law path R. Therefore, Snell's-law path RL lies entirely to the

left of Snell's-law path R.
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Case 3: (See Figure 61) Let Snell's-law path R intersect B at point P so that

its angle of incidence with the normal to B is measured in a counter-clockwise

direction. Suppose some Snell's-law path RR intersects B at P' where P' is to the

right of P, as in Figure 61. Clearly, if P' is to the right of P then /1>0 2. Thus,

132+a1=90, 31+01=90

fl2+ai,8 +Oi

31 +a 1>91+8 1

Thus, a1>9
1

Similar to the reasoning in case 2 above, a 2 >62 . Therefore, RR is entirely to

the right of R.

Suppose that some Snell's-law path RL intersects B at P' where P' is to the

left of P (see Figure 62). Then, by the case above, Snell's-law path R is entirely to

the right of Snell's-law path RL. Therefore., Snell's-law path RL is entirely to the

left of Snell's-law path R.

Therefore, by the three cases above, given any Snell's-law path R, intersecting

boundary B at P, then any Snell's-law path RR that intersects B at P' to the

right of P, lies entirely to the right of R and any Snell's-law path RL that

intersects B at P' to the left of P lies entirely to the left of R. QED.

Corollary I to Lemma 1: Any two Snell's-law paths within the same -explored

wedge do not intersect each other prior to their second boundary-crossing

episodes.
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Proof: Two Snell's-law paths within the same 1-explored wedge must intersect the

same homogeneous-cost region boundary at their first boundary-crossing episode.

By Lemma 1, these Snell's-law paths cannot intersect prior to their second

boundary-crossing episode. QED.

Corollary 2 to Lemma 1: Any two known-optimal-cost Snell's-law paths do not

intersect each other more than once unless the cost of the two subpaths between

the first and last intersection of the Snell's-law paths have equal subpath cost.

Proof: Assume Snell's-law path SL, is the single optimal-cost path between points

A and B and that Snell's-law path SL 2 is the single optimal-cost path between

points C and D. Assume SL1 and SL 2 intersect at points P and P 2. If the P 1-to-

P2 subpath along SL1 has lower cost than the P -to-P2 subpath of SL, then there

is a C-to-D path that follows along SL 2 up to point P,, then follows the P 1-to-P2

subpath of SL1 , and then follows along path SL2 from P2 to D and this path has

lower cost than the SL 2 C-to-D path. This is a contradiction since SL 2 is known

to be the optimal-cost C-to-D path. Therefore, the two P1 -to-P2 subpaths must

have equal cost between points P and P,. QED.

Lemma 2: (Refer to Figure 63.) There is a Snell's-law path from point S to point

P that intersects boundary B between the endpoints of B, (which are also region

vertices) EL and E., if and only if boundary B lies between points S and P and

P is within the 1-explored portion of th wedge (i.e.. is interior to the polygon

describing the wedge) formed by RL and RR where RL is a Snell's-law path

through the left endpoint of B (EL) and RR is a Snell's-law path through the

right endpoint of B ( ER )
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Proof: (part I for Lemma 2) P is within the wedge, therefore, a Snell's-law path

from S, across B to exists.

By Corollary 1 to Lemma 1, the optimal-cost S-to-P path cannot intersect

either RL or R R. Since P, lies between these two wedge-defining Snell's law paths,

the optimal-cost S-to-P path must intersect boundary B. As shown in II.C, the

optimal-cost S-to-P path that intersects boundary B must obey Snell's law at the

boundary-crossing episode. Therefore, a Snell's-law path from S to P, exists.

(part 2 for Lemma 2) P, is not within the wedge formed by RL and RR.

Therefore, no Snell's-law path from S that intersects boundary B between EL and

ER to P1 exists.

By Lemma 1, any Snell's-law path from S, intersecting B between EL and ER

will be bounded on th2 left by RL and on the right by RR. Since P is either to

the right of RR or to the left of RL, none of these Snell's law paths pass through

the point P,. Therefore, there is no path from S, across B between EL and E. to

P, such that this path obeys Snell's law at the boundary-crossing episode about

boundary B. QED.

Lemma 3: (Refer to Figure 64.) If the goal PG lies outside the wedge defined by

Snell's-law paths RL and RR, then a minimum-cost path involving boundary B

from S to PG is S-to-E -to-P; where EJ is the closest endpoint of B to PG.

Proof: Movement of the path below B beyond either endpoint of B towards PG is

prohibited by definition since the path must intersect boundary B. Assume P is

some point on B properly between EL and ER. Assume, as in Figure 64, that PG

is closest to ER. Then, any path S-to-PB-to-PG must have greater cost than the
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path S-to-ER-to-PG. The former path must intersect the path R, at some point,

PP Since P is on RR,, the path S-to-PB-to-PI must have greater cost than the

path S-to-ER,-to-PI since the latter is a Snell's-law path between S and P, and

must therefore be a minimal-cost path between those two points. Therefore, the

path S-to-PB-to-Prto-PG has greater cost than the path S-to-ER-to--Prto-PG.

Also, the path ERi-to-PG has lower cost than the path ER,-to-Pl-to-PG since the

former is a straight line (and thus has least distance) and the two paths have the

same cost rate. Therefore,

cost(S-to-ER-to-PG) < cost(S-to-ER -to-P-to-PG)

cost(S-to-ER-to-PI-to-PG) < (costS-to-PB-to-PJ-to-PC)

Clearly, the same proof technique applies to goal points closest to EL. QED.

Extending the results of the preceding lemmas to an indefinite number of

boundary-crossing episodes is accomplished by the following theorems. Theorem

1 extends the result of Lemma 1.

Theorem 1: Any two Snell's-law paths within a K-explored wedge defined by

Snell's-law paths RL and R. do not intersect within the K-explored portion of the

wedge.

Proof: (See Figure 65.) By Corollary 1 to Lemma, no two Snell's-law paths can

intersect each either before or immediately after their first boundary-crossing

episode. Thus, the theorem holds when K = 1. Assume that the theorem holds for

the first N boundary-crossing episodes (where N = K - 1). Let the angle of

refraction for RL after intersecting the Nth boundary be eL. Let the angle of

refraction for RR after intersecting the Nth boundary be 0R. (Both angles are in
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terms of the coordinate system X axis). Let the angle between boundary K and

the X axis be 0. It must be true that RL has an angle of incidence with boundary

K of 90 - O/ - / (in degrees). Similarly, RR has an angle of incidence with

boundary K of 90 - 01 - 6. Both Snell's-law paths RL and RR must obey Snell's

law at their Kth boundary-crossing episode. Thus, the sine of their angles of

refraction after intersecting boundary K must equal the sine of their angles of

incidence multiplied by a common fraction (the ratio of cost rates about boundary

K). It should be clear that when eL and OR do not allow RL and RR to intersect

(before intersecting boundary K), then the angles of refraction computed after

intersecting boundary K (as above) will also be such that RL and RR cannot

intersect each other after their Kth boundary-crossing episode. Thus, the theorem

holds for the Kth boundary-crossing episode where K = N + 1 and Theorem 1 is

established. QED.

Theorem 2 extends the result of Lemma 2.

Theorem 2: There is a Snell's-law path within a K-explored wedge to the closest

unsolved search point within that wedge.

Proof: By Lemma 2, this is true when K - 1. Assume that the theorem holds for

the first N boundary-crossing episodes within the wedge where N = K - 1. Thus,

there is a path from the start to every point on the Kth boundary (within the

wedge) since these points on boundary K are all within the N-explored portion of

the wedge. By Theorem 1, we know that no two Snell's-law paths within the K-

explored portion of the wedge intersect. By definition, the closest unsolved search

point lies beyond boundary K and between the left and right wedge-defining
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Snell's-law paths, RL and RE. Thus, tracing a new Snell's-law path through the

, K-explored portion of the wedge must result in a Snell's-law path that lies

between RL and RR and the unsolved search point must be between either the

new path and RL or between the new path and RR. Since every point on

boundary K is on a Snell's-law path, the tracing of new paths through the wedge

can be continued until the search point is bracketed between two Snell's-law

paths that pass through infinitesimally separated points on boundary K.

Eventually, one of the new Snell's-law paths must pass through the closest

unsolved search point (that is, by definition, located beyond boundary K). Thus,

the theorem holds for the K = N + 1 case. This establishes Theorem 2. QED.

The following Theorem extends the results of Lemma 3 to encompass K-

explored wedges.

eTheorem 3: If the goal lies outside a wedge, then there is no Snell's-law path from

the wedge tip to the goal such that the path lies entirely within the wedge.

Proof: Let Snell's-law paths RL and R. define the left and right wedge

boundaries. Since the goal lies outside the wedge, then any Snell's-law path within

the wedge must intersect either RL or R. in order to pass through the goal. By

Theorem 1, this cannot occur. QED.

The following two lemmas apply directly to Snell's-law paths that include

arbitrary numbers of boundary-crossing episodes.

Lemma 4: Given Snell's-law paths RL and RR that define a K-explored wedge,

then the minimum-cost path from ihe wedge tip to the Kth boundary is either

from the tip along RL to boundary K. from the rip along RR to boundary K. or
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along a new Snell's-law path, R. that starts at the wedge tip and intersects

boundary K at the normal. (Also see [Ref. 3. p.25] for proof of a similar

property.)

Proof: There are two cases; either RL and R. have the same direction of rotation

(i.e., either clockwise or counter-clockwise) as they are refracted by intersection

with boundary K or they have different directions of rotation after intersecting

boundary K.

Case 1: RL and R. turn (or rotate) in the same direction after intersection

with boundary K (refer to Figure 66). Consider the point A on path R 4. By

definition of a Snell's-law path, RA must be the minimum-cost path from the

wedge tip, S, to A. However, note that the shortest-distance path from boundary

K to point A is a normal to K that intersects K at the same point as Snell's-law

path RL. The normal to K through A is in the same homogeneous-cost region as

the portion of RA above K and therefore has lower path cost from K to A. Since

RA is the minimum-cost path from S to A it must be true that RA has a lower

cost to reach K than does path RL (up to boundary K). A similar argument can

be made for any point on the dashed A to C line segment of Figure 66, resulting

in the fact that R. must be the locally minimum-cost path through the K-

explored portion of the wedge (up to boundary K). The same general proof

technique holds when all paths exiting boundary K rotate in a clockwise direction.

In this case, path RL is the minimum-cost path through the K-explored portion of

the wedge.
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Figure 67. Example for Lemma 4, Case 2

Paths Have Opposite Rotation Directions

Case 2: RL and R, rotate in different directions after intersecting boundary K

(refer to Figure 67). By convexity, there must be some path, RN, between RL and

R t, that intersects K at normal. By case 1, path cost must be monotonically

decreasing from RL to R,. Similarly, path cost must be monotonically decreasing

from RR to RN. Therefore, RN must constitute the minimum-cost path through

the K-explored portion of the wedge. QED.

Lemma 4 is useful in forming lower-bound evaluations for the cost of any path

through a K-explored wedge. Lemma 5, below, establishes a criterion that is

useful in producing an iterative search strategy to solve Snell's law, given two

points that we wish to connect by a Snell's-law path. Before introducing Lemma

5, we note that each Snell's-law path within a K-explored portion of a wedge is
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uniquely determined by any point on that path (by Theorem 1). Thus, any

Snell's-law path within a K-explored portion of a wedge is uniquely determined by

a point on the Kth boundary within the wedge. Let P be the distance from such

a point to the point of the Kth boundary-crossing episode of the Snell's-law path

that defines the wedge left boundary. Since there is a unique minimum distance

from a point to a line segment, there is a unique minimum distance from the

closest unsolved search point within a wedge to the path segment (immediately

after crossing the Kth boundary) of a Snell's-law path. We define a function

dist (P) = D. as a mapping from a Snell's-law path-defining point characterized

by P (as above, a distance along the Kth boundary) to the minimum distance

from the closest unsolved search point to that path segment of the Snell's-law

path immediately after the Kth boundary-crossing episode.

0 Lemma 5: diat (P) = Dp is a quasi-convex function of P.

Proof: (Refer to Figure 68.) Let dist(A) = D.4 and dist(B) = D . The definition

of quasi-convexity requires that dist(AA + (1-A)B) jmax{DA,D,} for each

Ac[0,11. Let A > B, D A > D. and let there be some point C distance away

(along the Kth boundary) from the Kth boundary-crossing episode of the Snell's-

law path that defines the wedge left boundary such that C lies between A and B

(i.e., C = AA + (1 A)B) and dist(C) = D.. Let R.A, Rs, and R c be the Snell's-

law paths determined by A. B. and C respectively. If the closest unsolved search

point within the wedge lies between RA and R . then Dc  DA since Snell's-law

paths within a K-explored wedge cannot intersect each other (by Theorem 1).

Suppose then that the closest unsolved search point does not lie between R and
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unsolved

search

point

L B C AR

These paths continue through the wedge

back to the start

Figure 68. Dist(P) Quasi-Convexity

R. and assume that D C > DA. If Dc > D A then the Snell's-law path determined

by A (i.e.. R.,) must lie between the closest unsoived search point and the

Snell's-law path determined by C (i.e., Rc). For this to be the case, the problem

geometry must be similar to that depicted in Figure 68 (since, again by Theorem

1. none of the Snell's-law paths can intersect ,aci other within the K-expior*i

portion of the wedge). In this case. D3 - D. which ,s a ,ontradicrlon.

Therefore, it must be true that Dc < DA and dist(P) is a quasi-convex function.

QED.
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F. RELATIONS BETWEEN ADJACENT WEDGES

The preceding discussions all focus on Snell's-law path characteristics within

single wedges. One way to view wedges is as areal divisions of physical space (as

represented by the area-cost map). Thus. they are not isolated. Each wedge has

an adjacent wedge as a neighbor. Suppose that wedge W is defined with Snell's-

law path RL as its left boundary and R. as its right boundary. Let P be the

closest unsolved search point within W. Once a Snell's-law path within W to P is

found. P becomes a solved search point. Further. the Snell's-law path to P can be

used to define new wedges (see Figure 69). Since P is a vertex of a homogeneous-

cost region, there are two line segments (modeling region boundaries) that share P

as an endpoint for example. sides B, and B, in Figure 69 have P as a common

endpoint). The Snell's-law path to P can be continued through P in two ways. In

Figure 69, RPL is a new Snell's-law path that intersects side B, of the high-cost

regioT Path Rpe is a Snell's-law path through P on side B2 of the region. Three

new wedges can be formed from these two new paths, all of which refine (make

new sub-wedges from) the original wedge defined by RL and R . One new wedge,

W 1. has RL as a left boundary and RPL as a right boundary. Similarly, wedge W3

is defined by RpR on the left and RR on the right. The third wedge, W2, has the

Snell's-law path from S to P as an approach path and is defined thereafter as

having R!,L on its left and Rpn on its right. This wedge is empty since it

terminates immediately when RPL and RpR intersect at vertex P.

Before justifying the emptiness of W2, consider wedges W1 and W3 and their

relation to the points P1 through P5 in Figure 69. From Theorem 2 and Theorem
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Figure 69. Example of Refining a Wedge Into Sub-wedges
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3 it is clear that the least-cost path from S to P1 goes through vertex V1 of the

, high-cost region (but the path does not intersect the high-cost region). Similarly,

the least-cost S-to-P5 path is S-V2-P5. The point P2 is only included in the W1

wedge. Based on Theorems 2 and 3, the globally minimum-cost path from S to P2

is a Snell's-law path intersecting sides B3 and B I of the high-cost region. Similarly

with point P4, wedge W3, and sides B3 and B 2 of the high-cost region.

The point P3 is inside both the W1 and W3 wedges. Theorems 2 and 3 imply

that the cost of the S-V1-P3 path is greater that the cost of a Snell's-law path

from S to P3 across sides B3 and B, of the high-cost region. Similarly, there is a

Snell's-law path from S to P3 that is within the W3 wedge. Thus, there are two

locally-minimum-cost paths from S to P3. In general, it is difficult to know, a

priori, which of the two local minima is a global minimum. We must find both

S paths and compare their costs.

The W2 wedge must be empty, even though it appears to contain point P3 of

Figure 69. Consider a path from S to P3 that includes S-I-P as an approach path.

The least-cost such path is S-I-P-P3. By Theorem 2, there is a Snell's-law path

through wedge W3 that intersects B3 to the right of I and B2 to the right of P

and this path has lower cost than the S-I-P-P3 path. A similar statement can be

made concerning a Snell's-law path through wedge Wi. Thus. for any point

between R PL and R PR, the optimal-cost path from S to that point is either in

wedge WI or in wedge W3.

Wedge W2 is empty because its left boundary, RPL lies to the right of its

right boundary, RPR. These two paths intersect at point P. immediately
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terminating the wedge. The relation between RPL ard RPR exists because because

the continuation of the S-I-P path exits an high-cost region through a region

vertex forming an angle greater than 180 degrees. Lemma 6 below formally

establishes the relation. Before considering Lemma 6, we introduce some

terminology. A polygon in which no two adjacent polygon boundaries form a

reflex angle (i.e., an angle between 180 and 360 degrees, also known as a concave

angle) relative to the interior of the polygon is termed a convex polygon. By

definition, each angle in a convex polygon is a convex angle formed about a

convex vertex of the polygon. If one or more angles of the polygon does form a

reflex angle, then the polygon is a non-convex polygon and the angles that are

reflex angles are said to be non-convex angles. A non-convex angle is formed

about a non-convex vertex of the polygon. Finally, a Snell's-law path can be split

at a region vertex, P, resulting in two Snell's law paths that are identical from the

wedge tip to P and different thereafter. The two Snell's-law path that result from

the split can be used to refine a wedge. As an example, the two Snells'-law paths

resulting from a split at vertex P form a middle sub-wedge where P is the wedge

tip.

Lemma 6: The splitting of a Snell's-law path at a convex vertex, P, of a high-cost

region results in the creation of an empty middle sub-wedge. This sub-wedge is

empty because the Snell's-law paths that define the sub-wedge left and right sides

intersect each other at vertex P.

Proof: (Refer to Figure 70.) Let the dashed lines in Figure 70 represent a static

reference line (such as the coordinate system X axis). Boundary B is rotated

clockwise about this line by 3 in Figure 70a and by /3-4 in Figure 70b. Assume
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a Normal to B

Static Reference

Boundary B1

Ray RI

(a)

90-a +a Nralo to B

Static Reference

Boundary B2

Ray R2

(b)

Note: Boundary B2 is the adjacent region boundary- to

B1 and B 2 is in a clockwise direction from B1

Figure 70. Example for Lemma 6, Splitting a Snell's-law Path

at a Convex Vertex of a High-Cost Region Results in the
Creation of an Empty Middle Sub-wedge
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that the figures can be overlaid so that the reference lines (as well as the bottom

portions of the rays) are collinear. Consider the inequality

90-a3+8+0 < 90-a2 +

If this inequality is true, then clearly, path R 2 lies in a counter-clockwise direction

from path R I' If the two angles are equal, the paths are identical. If the inequality

expresses a greater than relation, then R2 lies in a clockwise direction from RI.

90-a 3 +0+0 <90- 2 +0

- 3 + 2<-a2
L a3 - 0 > a.

OL ?>a +
3 2)ofr 3 ?>a 2 +

Since these are angular measures, an equivalent question is

sin(a 3 ) ?>sin(a 2 +P)

Let U and U2 be cost measures such that the portions of R 1 and R above B are"
121 2

traversed at cost U2 and the portions of R1 and R2 immediately below B have

cost rate U,. Then, using Snell's law

U2sin(a )
=sin (a9)

U1

U.sin(a, +0)

-sin(a 3 )

Then. substitilting

sin(a 3 ) ?>'sin(a 2 -0)

U2sin(a1 +)

U1 >sin( 2 +)

by identity
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U2
-- s o o) +cos( )sin()) P> sin( +cos(a)sin(P )

U2  U2

(U 21 U1 )cos(a,)sin(O) ?>cos(a 2 )sin(O)

( U2/ rl)cos€,al) ?>cos(a )

U2/' U ( 1_smn2(a 1 )) 1/?>( 1-sin 2(a~2))1/

(U 2 /U 1 ) 2(1-sin2 (ae)) ?>1-sin2(a 2 )

(U 2/ UI)2-(U2/ UI)2Sin-2(l) ?>, 1-U2/ U) 2Sin 2(a)

(U2/ U') 2 > I :

(U 2/ U1)?>1

Thus, the relation between the two paths depends on the ratio of the costs in the

adjacent regions.

If a region can be modeled by a convex polygon and we examine consecutive

polygon boundaries in clockwise order, then every boundary must be rotated

clockwise from its immediate predecessor boundary. Using this scheme, the

boundary in Figure 70b would be the clockwise successor of the boundary in

Figure 70a. Thus, in forming adjacent wedges, the path in Figure 70a would

correspond to RR and the path in Figure 70b corresponds to path RL. Thus. these

paths must intersect immediately when exiting through a convex vertex of an

high-cost region. If exiting through a convex vertex of an low-cost region, then the

inequality

90-a .. > 90-a,-3

197



holds and the adjacent wedge-defining Snell's-law paths cannot intersect. Note

that if the region vertex is non-convex, then the path in Figure 70a corresponds to

a left wedge boundary (i.e., RL) and the path in Figure 70b corresponds to a right

wedge boundary. Thus, non-convexity of a region vertex may also reverse the

intersection relation for adjacent wedge-defining Snell's-law paths. That is, exiting

through a non-convex vertex of an low-cost region allows the same relations as

exiting through a convex vertex of an high-cost region. QED.

Lemma 6 establishes three other related lemmas.

Lemma 7: The splitting of a Snell's-law path at a non-convex vertex., P, of a

high-cost region results in the creation of a (possibly) non-empty middle sub-

wedge since the two wedge-defining Snell's-law paths do not intersect each other

at vertex P.

Lemma 8: The splitting of a Snell's-law path at a non-convex vertex, P, of a low-

cost region results in the creation of an empty middle sub-wedge. This sub-wedge

is empty because the Snell's-law paths that define the sub-wedge left and right

sides intersect each other at vertex P.

Lemma 9: The splitting of a Snell's-law path at a convex vertex. P, of a low-cost

region results in the creation of a (possibly) non-empty middle sub-wedge since

the two wedge-defining Snell's-law paths do not intersect each other at vertex P.
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G. PRUNING CRITERIA

LemMa 6 and 8 define a pruning criterion: Wedges whose wedge tips

correspond to convex high-cost region vertices or non-convex low-cost region

vertices are always empty, and thus never need to be created or examined.

Therefore, wedges that conform to the criteria of Lemmas 6 or 8 can always be

eliminated (pruned) from the search space. There are other occasions when wedges

can be pruned. The first of these depends on the establishment of Lemma 10.

Lemma 10: A globally optimal-cost solution path, P, between a given start, S, and

goal, G, includes (as a portion of P) globally optimal-cost paths between any two

points on P.

G

High-Cost AA P
Region 

2

S/'

Figure 71. An S-to-G Solution Path

Proof: (Refer to Figure 71.) Suppose that the (S-P-A-G) path is known to be the

globally minimum-cost path between S and G. Let P and P2 be any two points

on path S-P-A-G between S and G. Denote the S-P-A-G path as S-P 1-P 2-G.

Assume there is some path between P and P 2, P.,, such that Pmia has a lower
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cost than the cost from P1 to P 2 along the S-P 1-P2-G path. Then path S-Pin-G

must have lower path cost than the S-P-A-G path. However, the path S-P-A-G is

known to be the optimal-cost path from S to G. Therefore, by contradiction, Piin

cannot exist. QED.

Now consider two distinct wedges, WI and W that both have wedge tips at

the same vertex, V. If Ir is not the start, then W, and W2 must both have S-to-V

approach paths and these approach paths must be different (otherwise W1 is

identical to W2). Based on Lemma 10, the wedge having the higher-cost approach

path from S to V can be pruned from the search space. This holds, regardless of

what happens to WI and W 2 after V, even when the wedge having a higher-cost

approach path contains a feasible start-to-goal solution and the other wedge does

not. Any path through the wedge having the higher-cost approach path can be

"shortcut" from S to V and thus cannot contain the optimal-cost solution path to -IN4L
a weighted-region problem.

In some cases, possible paths through specific pairs of sides of homogeneous-

cost regions can also be pruned. That is, suppose that any Snell's-law path

through a given wedge must intersect sides B, and B 2 of a high-cost region. Then,

if sides B, and B 2 meet the criterion established by Lemma 11, the wedge can be

pruned from the search space.

Lemma 11: (Refer to Figure 72.) Given cost rate U, inside a high-cost region

polygon and cost rate U1 outside the region, then no optimal-cost path intersects

sides BI and B 2 of the region (consecutively) if all angles formed by the sides of

the high-cost region between B, and B 2 are convex angles, sides B1 and B,
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together form angle a and sin(O.5a)>U/U 2. (B 1 and B2 form angle a when we

consider B1 and B 2 to be infinite length lines, not segments, that must intersect

and a is measured at the point of intersection relative to the interior of the high-

cost region.) In this case, there is some path that travels in the lower-cost region

around sides B, and B 2 and has lower cost than any path that intersects the two

sides.

Proof: We are comparing the costs of the line segijents (z1 ,yIY2 ,z 2 ) and (a,b,c)

as in Figure 72. By the Theorem of Pythagoras:

Z1 <a

z 2 < C

Yl<bl

y2<b2

Thus, if bu2>(bl+b 2)uI, the cost of going along (a,b,c) is greater that the cost

associated with (zl,u1 ,y 2 ,z2 ).

b
Transform the inequality bu2 >(bl+b 2)Uz into >-. Assuming the

(b1 +b 2 ) u2

U I

cost coefficients are known, then the ratio - is known.
u 
2

b
(Refer to Figure 73.) We first prove that is minimized when b1 =b.(b + b')

First, use the law of sines to transform this problem into a more appropriate form.

b b2

sin(a) sin(#,) sin(,,3)
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b

2

Fig'ure 73- Minimizing b/(bl + b2 )

Li1+LiI sinn~

sixi(a)

sin(/31) +sin(32)This form is more appropriate since cr is ffixd and we wish to find the minimizingvalues for 31 and },. Since Q is fixed, 
s m n m z d w e

sin(,81) +sin(,8,) sin (fi1) -sin (C3,)ismnizdwesin~ c3 +sn(~ 3)is mai mied. A rbitrarily, assum e 6, is greater than or equal toand fin i~ so hat sin~ 1) +si (3)is m axim ized. A gain, by the law of sines,
sinn(3

1
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Substituting,

b(in( )+)

bi 
9

=sin(#6)(l+b2 /b,)

since #,,>82 then b1>)b2. Therefore,

s'n(#,)('+b2/bl)

is maximized when bI= b .

b
We now consider the ratio of - when bI= b .

b1+b2

By the law of cosines

b2= b12 +b2 2- 2b b 2cos (a)

Substituting equals

=2b_ 2 b, cos(a)

=2b1
2(1-cos(a))

The original fraction squared is

b 2  2b I (,-COS(a))

4b1
2  4b 1

2

1/2

b 2 1
2 1-os(a)Yj

2b, 4b

which by identity is sin(a/2).
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Therefore

b0 -sin(a/2)
2b1

and
b b

bl+b 2  2b1

Therefore, when sin(a/2)>u1 /u 2 no optimal-cost path through the region exists.

QED.

We note that all the conditions expressed in Lemma 11 must be met for the

result to hold. If some angle between sides B, and B2 is non-convex, then an

optimal-cost path may include an endpoint of either of the two sides. Figure 74

exemplifies such a case. Here, the angle formed by sides BI and B2 meets the

criterion of Lemma 11. However, vertex P is a non-convex vertex that is formed

by two sides of the high-cost region that are between B, and B2. Lemma 11

cannot be applied in this case. An optimal-cost S-to-G could easily involve vertex

P, as illustrated in Figure 74.

Thus, a more global view of a homogeneous-cost region can invalidate the

localized general nature of Lemma 11. However, taking a global view of the

problem can also lead to additional pruning criteria. Recall that wedges terminate

when their left and right boundary-defining paths intersect the bounding box. If a

wedge-defining path travels directly from the wedge tip to a side of the bounding

box at optimal cost, then there is an opportunity to prune the wedge. If the

conditions expressed in Lemma 12 hold, the wedge can be discarded.
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.i~hj, 1B2

Region '

S

Figure 74. Lemma 11 Does Not Apply When All Angles of the

High-Cost Region Are Not Convex Angles

Lemma 12: If RL is a Snell's-law path defining the left boundary of wedge W, RL

travels from the wedge tip to a side of the bounding box at optimal cost and the

goal, G, lies to the left of RL, then the optimal-cost start-to-goal path does not lie

inside wedge W. A similar result holds when G lies to the right of RA, defining

the right boundary of W, and R. travels from the wedge tip to a side of the

bounding box at optimal cost.

Proof: This situation is depicted in Figure 75 where the shaded triangles represent

high-cost regions. Note that RL travels from P, the wedge tip, .to point B, on the

bounding box, at optimal cost. The optimal-cost path to G involving vertex P

includes a P-to-G path segment. Any path to G based on refinement of W must

include the approach path to P. Thus, any path based on refinement of W must

include a subpath between P and G. This subpath must have greater cost than

the straight-line P-to-G path segment. Therefore, wedge W cannot contain the

optimal-cost S-to-G path and may be pruned. QED.
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*RLRR

S

Bounding Box.

Figure 75. Pruniing By Lemma 12

Note that Lemma 12 requires the strong condition that the wedge-defining

path closest to the goal travel directly from the wedge tip to the bounding box at

optimal cost. If this condition is not met (i.e., there are boundary-crossing

episodes between the wedge tip and the path intersection with the bounding box),

the wedge may contain an optimal-cost solution path, (as depicted in Figure 76)

and Lemma 12 cannot be applied. Here, even though wedge W lies entirely to the

right of goal, G, it still contains the optimal-cost solution path through vertex V.

* 207

,V-----o U,



G R

wedge ®
w

High-Cost
Region

Bounding Box
S

Figure 78. Lemma 12 Does Not Apply When the Wedge-Defining

Path Closest to the Goal Does Not Travel from the Wedge

Tip to the Bounding Box at Optimal Cost

Another opportunity to prune wedges relies on the global nature of the

weighted-region problem. Informed strategies use knowledge of the location of the

goal point to construct lower-bound evaluations for possible solutions. This

strategy can also be applied to the weighted-region problem. Clearly, one lower-

bound evaluation on the cost of a start-to-goal path is the Euclidean distance

between the two points traveled at optimal cost. Better (i.e., tighter) lower

bounds can be achieved by exploiting cached knowledge of the area-cost map. The

next section develops this idea.
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H. COST BOUNDS

Simple lower-bound cost evaluations for the optimal-cost path between any

two points on the area-cost map can be achieved by assuming that the distance

along the path is only the straight-line distance between the two points and that

the path only goes through low-cost regions. There are also other methods to

obtain lower-bound cost evaluations. Suppose that the globally optimal-cost

solution path between every pair of region vertices (including obstacle region

vertices) is precomputed and stored. These stored path costs can be used to

construct lower-bound cost evaluations for the cost of the optimal path between

any two points on the area-cost map.

Such a lower-bound cost evaluation is simply achieved by first locating two

region vertices, VG, the vertex closest to the goal, G, and V., the vertex closest to

4the start, S. Call the cached cost, Cp, the cost of the optimal Vs-to- VG path. Let

the cost of the straight-line path, traveled at the cost rate for point G, from G to

VG be CG. Let C$ be the cost of the straight-line path from S to V., traveled at

the cost rate for point S. Then, a lower bound on the cost of the optimal S-to-G

path is:

CP-(CS+CG)

Clearly, this must be a lower bound on the cost of the S-to-G path. Otherwise,

the known-optimal cost of the V.-to- V( path is greater than the cost of the path

from V. to S to G to VG. Similarly, an upper bound on the cost of the S-to-G

path is:
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This figure is an upper bound because the S-to- and G-to-VG path segments

must be feasible when VS is the closest vertex to S and VG is the closest vertex to

G.

Thus, stored-cost information can be used to construct both lower- and

upper-bound evaluations for the cost of the optimal path between any two points

on the area-cost map. Simply using Euclidean distance at optimal cost also yields

a lower-bound point-to-point cost evaluation. However, the Euclidean distance

path may not yield an upper bound if the path is not feasible. (If the straight-line

path intersects obstacle areas, it is not feasible.) An upper bound, not relying on

stored information, is achieved by finding the shortest-distance feasible path

between start and goal and computing the actual cost of this path. Note that any

feasible start-to-goal path acts as an upper bound on the cost of the optimal

solution. Using the shortest-distance feasible solution is just a simple one.

Reliance on stored information seems to provide a method of achieving cost

bounds quickly. However, if the space needed to retain the stored-path

information is large, the caching may not be justified. If there are N vertices in

the area-cost map then storing the cost of the optimal-cost path between each

pair of vertices requires saving the combination of N path costs taken 2 at a time,

N!/2(N-2)!. The storage requirement can be reduced (in the average case) by

treating the region vertices as nodes in it graph. Links are entered in the graph

between each pair of nodes (i.e., region vertices) that are connected by an

optimal-cost path that does not include any other nodes. That is, if the optimal-

cost path between two region vertices goes through some other region vertex, that

cost need not be explicitly stored. If the optimal-cost path between region vertices
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only intersects boundaries of high-cost regions (at places other than endpoints) or. the optimal-cost path is a straight-line segment, then the cost of that path must

be stored. Clearly, given such a set of nodes and links, the cost of the optimal

path between any two region vertices can be constructed by a standard graph

search algorithm. Using such a graph to store path costs reduces storage

requirements in the average case. In the worst case, the space requirement is still

exponential.

We have seen that both upper- and lower-bound cost evaluations can be

constructed for any point-to-point path. From Lemma 4, we can also find the

minimum-cost path from the wedge tip to the Kth boundary of a K-explored

wedge. In general, this information is more valuable in rating and pruning wedges

than point-to-point evaluations based on the wedge tip and the goal. The results

L obtained by applying Lemma 4 to a K-explored wedge are more meaningful.

However, Lemma 4 provides only a partial estimate; path cost from the Kth

boundary to the goal must also be included so that a total point-to-goal lower-

bound cost evaluation can be constructed. This requires that a line segment-to-

point evaluation, not a point-to-point evaluation to be added to the cost of the

minimal-cost path from the start to the Kth boundary of the K-explored wedge.

Here, a simple evaluation assumes that there is a straight-line path from the line

segment to the point (i.e., the goal) and that this path accrues cost at the optimal

cost rate. To use this estimate, the distance from the line segment to the goal

must be computed since it is the distance traveled by the straight-line path. The

distance from a line segment to a point is the length of a normal to the line

through the point if that normal segment intersects the original line segment.
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Otherwise, the segment-to-point distance is taken as the minimum of the point-

to-point distance from the two line segment endpoints to the point.

Stored costs can also be used to compute line segment-to-point lower-bound

cost evaluations. The following two lemmas establish both the proof and the

methodology.

Lemma 13: (Refer to Figure 77.) If a K-explored wedge contains both endpoints,

P1 and P2, of the Kth boundary, a lower-bound evaluation from P1 to goal G is

C1, a lower-bound evaluation from P2 to G is C2, the distance from P1 to P2 is

D, and the optimal cost rate on the area-cost map is C0 , then a lower-bound cost

evaluation from boundary K to G is:

Cl + C2-DC 0

2

Proof: (Refer to Figure 77.) For each point X on the Kth boundary, two lower-

bound cost evaluations are available, one based on P1 and one based on P2. That

is, if CXI is the cost of the X to P1 path and CX 2 is the cost of the X to P2 path

(both are based on the distance from X to the endpoint traveled at optimal cost),

then CI - CgX and C2 - CX2 are both lower-bound cost evaluations for a path

from X to the goal G. Since these are both lower bounds, the greater of the two

costs is a tighter lower bound. However, there could be some other point X' also

on boundary K that is less expensive to connect to G. That is, a path through X"

has a lower maximum lower-bound evaluation than does the path through point

X. To construct a lower bound on the cost for any path between boundary K and

G, we must find X' so that it is the point on boundary K that has the minimum

maximum lower-bound evaluation. Then, every other point on K will have one
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CI cost solution (known)

\ C2 cost solution
frmP tG (known) from P2 to G

2 Boundary K

D

quu

Wedge Tip

Figure 77. Example for Lemma 13, A Wedge Contains Both

Endpoints of Boundary K
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lower-bound evaluation that is greater than the maximum lower-bound evaluation

through point X'. The minimum maximum lower-bound cost evaluation occurs at

the point X' when the two evaluations for that point are equal (i.e., the

evaluation based on a path through point P1 equals the evaluation based on the

path through point P2). This is true since, as the location of X' moves away from

P1 towards P2, CX1 decreases monotonically while CX2 increases monotonically.

Thus, in general, as X' moves away from P1 to P2, the maximum lower-bound

evaluation for X' is based on the path through P1 until the evaluation based on a

path through P2 overtakes it. From this point on, the maximum lower bound for

X' is based on the path through P2 and this bound increases. Thus, the minimum

maximum lower bound for X' occurs when the evaluation based on the path

through P1 equals the evaluation based on the path through P2. Let D be the

distance between P1 and P2 and let Dx be the distance between P1 and X'. Then

the two evaluations for X' are equal when:

CI - DXCo=C2-(D-Dx)CO

C1-DxCo=C 2 -DCo+DxCO

C =C , -DCotDx Co - DxCO

Cl= C2+2D x Co-DC o

Ci- C2 +DCo=2DxCo
C-Ct-DCo

.=Dx' Co
2

Now note that the lower-bound cost evaluation for a point Dx distance away

from P1 on K is:

C1 Dx Co

~214"
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C1 - C2 -- DC o
c;I- 

2

2C C1-C 2 +DC o

2 2

2C 1-C 1 +C 2- DC o

2

C1 +C 2-DC o

2

QED.

Lemma 14: (Refer to Figure 78.) Let El and E2 be the points on boundary K

where the two wedge-defining Snell's-law paths of a K-explored wedge intersect

boundary K. Let PI and P2 be the endpoints of boundary K, CI be the lower-

bound cost evaluation from P1 to the goal, G, and C2 be the lower-bound cost

evaluation from P 2 to G. Assume C1 >C 2. Let D, be the distance from El to P

assumed to be traveled at the optimal cost on the area-cost map, C0 . Let D 2 be

the distance from P2 to E , also assumed to be traveled at cost Co . Let D be the

distance between P1 and P2* if

C1 +C 2 -DC o
DI < 2 D z "

2

then the lower-bound evaluation from boundary K to G is

C + -DC o

2

C1 +C 2- DC o
If D1 > then the lower-bound evaluation is

2

C 1-D
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C1 cost solution (known)
from P1 to G C2 cost solution

(known) from P2 to G

I1 E2 P2 Boundary K

Boundary 1

/K Explored
Wedge

Wedge Tip

Figure 78. Example for Lemma 14, A K-explored Wedge Does

Not Contain the Endpoints of Boundary K
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C1 +C 2-DC o
Otherwise, D2 < and the lower-bound cost evaluation is

C2-D2

Note that the lower-bound cost evaluations are based on the greater of C1 and
C2 . If C2> C then the evaluations are based on C2.

Proof: Lemma 13 is a special case of Lemma 14 and the proofs are similar. The

problem is to find the point on K, within the wedge, that has the minimum

maximum lower-bound evaluation. This is given according to the construction in

Lemma 13. In case 1 of Lemma 14, the point X' which yields the minimum

maximum lower-bound evaluation for segment K lies in the interval between E1

and E2, and is thus the appropriate evaluation for the E1-E 2 segment. In the

second case of Lemma 14, X' falls in the interval between Pi and El, and El is

the closest that any point in the El to E2 interval can get to X'. Since maximum

lower-bound evaluations are monotonically increasing on both sides of X', the

evaluation based on a path through point E1 is the best one available for the E,

to E2 interval. This evaluation is exactly C1-D. In the final case of Lemma 14,

the point X' falls between E , and P,. Here, an argument similar to that for the

second case above produces an evaluation based on the path from E2 through P2

to G. This evaluation is C1-D 2 . QED.

I. PHYSICAL BOUNDS

In Chapter III, the concept of using an ellipse to physically constrain the size

of the search graph was introduced. The same idea can be incorporated into a

scheme relying on a homogeneous-cost-region problem representation. Instead of
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limiting the search to those nodes within the ellipse, the region-based scheme

examines only those regions (or portions of regions) that are inside the ellipse. We

now formally prove that an ellipse can be constructed so that it must contain the

optimal-cost solution path for a weighted-region problem.

Lemma 15: Given a cost C'. of a feasible start (S) to goal (G) solution path, then

an ellipse having foci at S and G constructed so that for each point P, on the

ellipse boundary, the sum of the distance from PE to G plus the distance from PE

to S multiplied by the optimal cost CO is equal to CF must contain the optimal-

cost solution path.

S

Figure 79. Limiting Ellipse
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Proof: (Refer to Figure 79.) If the ellipse entirely contains the optimal-cost

solution path, the proof is done. Thus, assume that some portion of the optimal-

cost solution path exits the ellipse at a point A. Because the ellipse circumscribes

the goal G, any start-to-goal solution path must again enter the ellipse at some

other point B. The shortest-distance connection between A and B that does not

enter the ellipse between A and B travels right along, but just outside the ellipse

boundary (similar to the dashed line in Figure 79). Assume that the connection

between A and B takes such a course and that it can be traveled at cost C0 . Note

that, by construction, the segments S-P. and G-PR are as if traveled at optimal

cost. Also, assume S-A and G-B can be traveled at cost C0 . Assuming that S-A,

G-B and A-B can be traveled at CO produces the least-cost path that does not lie

entirely inside the ellipse. Also, these assumptions factor cost out of the problem.

Clearly, the S-P.-G path has less distance than the S-A-B-G path. Therefore, the

optimal-cost path must lie entirely within the constructed ellipse. Note that, by

construction, the feasible solution having cost C. must also lie within the ellipse.

Therefore, there is at least one feasible solution within the ellipse. QED.

The ellipse can also be made smaller iteratively. Once the ellipse based on C.

is constructed, there must be some lowest cost rate associated with only those

homogeneous-cost regions inside the ellipse. The ellipse can be reconstructed if

this inside lowest cost does not equal C0 . In fact, the reconstruction can continue

until the ellipse contains a homogeneous-cost region having cost rate equal to the

(lowest) cost rate used in the construction of the ellipse. A proof is very similar to

that given for Lemma 15 and is not repeated.
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The bounding box is constructed to be a rectangular figure that entirely

contains the limiting ellipse of Lemma 15. The width of the bounding box is equal

to the ellipse minor axis and the rectangle height is equal to the ellipse major axis.

The bounding box is placed on the area-cost map so that each of its sides is

tangent to the ellipse at exactly one point (see Figure 80). Clearly, the bounding

box must entirely contain the optimal-cost solution path since it contains the

limiting ellipse of Lemma 15.

G

Bounding
Box

Ellipse

S ..

Figure 80. Bounding Box Circumscribes Ellipse

The feasible solution required to construct the limiting ellipse of Lemma 15

can be achieved by any of the point-to-point upper-bound methods previously

discussed. There is also a method to construct a feasible solution based on stored

information. Suppose we construct the straight-line path between the start and

goal and locate the boundary-crossing episode on the path closest to the goal EG

and the boundary-crossing episode closest to the start Es . Let EGI and EG2 be the

endpoints of the boundary on which EG is located. Similarly define Es1 and ES2
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relative to Es. If the paths between region vertices are stored, we can find the

least-cost path between E. and ES based on paths through boundary endpoints.

The paths S-Es and G-E. must be feasible and can be connected by the least-

cost ES-EG path, resulting in a feasible S-to-G path.

In addition to cached path costs, cached path locations can also be used to

physically limit the search space. In Figure 81, known optimal-cost paths between

P and P 2 and between P3 and P 4 both originate and terminate outside the

bounding box. Further, both S and G are inside the polygon defined by these two

paths and the bounding box. By Lemmas 10 and 13, the optimal-cost S-to-G

path must lie entirely between the P1-to-P2 path and the P 3-to-P4 path. Thus,

cached path locations can also be used to limit the search space in the weighted-

region problem. Using cached information in this manner amounts to a subtle

S form of learning. Exploitation of such a primitive learning capability is hampered

by indexing problems. It is difficult (and thus time consuming) to select the best

pair of stored paths in order to maximally limit the search space. However,

occasions arise when the search space can be severely constrained, as exemplified

by Figure 82. Here, the problem neatly decomposes into finding the least-cost S-

to-A path, B-to-G path, and then connecting these two paths by the stored A-to-

B approach path. We also note that "learning by doing" [Ref. 45] could be

exploited in a similar manner. Solutions to previously solved instances of

weighted-region problems could be stored, allowing the accumulation of a base of

knowledge over time.
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Figure 81. Constraint By Known Paths
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Figure 82. Highly Constrained Search Space
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J. LIMITATIONS IN THE APPLICATION OF SNELL'S LAW

Section IV.C clearly shows the applicability of Snell's law to the weighted-

region problem and the following sections develop properties of the law when so

applied. There are, however, characteristics of the law that are incompatible with

the weighted-region problem. The first of these is that Snell's law does not apply

to obstacle areas. Even when obstacles are modeled as regions of infinite cost rate,

Snell's law will still allow paths to go through them. There is a trivial solution to

the obstacle problem. We have defined a Snell's-law path so that it ends when it

intersects the bounding box. We extend the definition so that Snell's-law paths

also terminate if they intersect an obstacle region boundary.

A second problem involves the total internal reflections allowed by Snell's law.

Recall the equality relation expressed by Snell's law:

sin(e1)/U , = sin(02)/U 2

Here, U, and U2 are inverses of refractive indices, e1 is an angle of incidence and

02 is an angle of refraction. (When applied to the weighted-region problem, U1

and U2 become cost-rate reciprocals.) There is no known closed-form solution

yielding the Snell's-law path between two given points. However, given an initial

point and heading, a Snell's-law path can be constructed. Finding the Snell's-law

path between two given points relies on an iterative ray-tracing operation.

Snell's-law paths are iteratively constructed until the desired points are connected

(within a given tolerance in that the Snell's-law path begins at one point and

passes within some tolerance of the second point).
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Constructing a Snell's-law path given an initial point and heading requires

directly solving for the angle of incidence 0, at each boundary-crossing episode on

the path. Once 01 is known, the transformed Snell's-law equation,

U2sin(81)/U 1 = sin(02)

is used to solve for the sine of the angle of refraction (corresponding to the same

boundary-crossing episode). Dependent upon the values in the transformed

equation, the quantity U2sin(d)/Ul can be greater than 1, meaning a total

internal reflection. For this to occur, the ratio U2 / U1 must be greater than unity.

Thus, in the weighted-region problem, total internal reflections only occur when a

path exits a high-cost region, entering a low-cost region. In this case, a path that

obeys Snell's law "bounces off" the region boundary, back into the high-cost

region at a new heading of ((U 2sin(O))/U,)-1. Clearly, a path that "doubles

back on itself" in this fashion makes no sense in the weighted-region problem. An

algorithm that relies on Snell's law as a guiding principle must make provisions

for internal reflection paths.

In the weighted-region problem, the only interesting reflection paths are those

that occur when ((U 2sin(8j))/U 1)=1 because these are the only reflection paths

that do not "double back" into high-cost regions. In this case, 0e is called the

critical angle and 0, = arcsin(U1I/ U2). Such paths often provide the optimal-cost

path between a start inside a high-cost region and a vertex of that region. as

illustrated in Figure 83. Here, the optimal-cost path from S to V intersects side B1

of the high-cost region at the critical angle. In this case, we say that the path

critically uses side B1 of the high-cost region.
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Figure 83. A Reflection Solution Path

RL

R

RB2 Blind

High-Cost
Region

Start

Figure 84. A Blind Region

A third problem area arises due to the existence of blind regions. These

regions correspond to portions of the area-cost map that cannot be reached by

any Snell's-law path beginning at the start location. Figure 84 depicts such an

instance. Here, path RL is refracted at vertex V by intersections with sides B I and
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B. of the high-cost region. Path RR travels infinitesimally close to vertex V but it

does not intersect any side of the region. Conceptually, RL is the rightmost path

through V that intersects the high-cost region and R. is the leftmost path

through V that does not intersect the region. Thus, any path to the right of RL

does not intersect the region and any path to the left of RR does. By Theorem 1,

any path to the right of RL is also to the right of (or identical to) RR and any

path to the left of RR is also to the left of (or identical to) RL. Therefore, there is

no Snell's-law path from the start to any point inside the wedge defined by RL

and RR. By definition, such a wedge is a blind region. The optimal-cost path to

any point within this blind region wedge is constructed by finding the optimal

path from V to that point and appending that path to the predefined S-to-V

approach path. Snell's law is not applied at vertex V where the two paths areejoined (although Snell's law does apply in the limit when a vertex is modeled by a

small curve, not by the intersection of two lines).

There is an analogy from the field of optics that applies in cases where paths

include a blind-region vertex as a turn point. The situation is similar to (single

slit) diffraction optics (however, in the path-planning problem, the path is

constrained to remain within the boundaries of the wedge). Let a vertex at the

base of a blind region be denoted as a diffraction vertex. Thus, vertex V of

Figure 84 is a diffraction vertex.

When blind regions occur, they represent an opportunity for the start-to-goal

path-planning problem to be recursively decomposed. Any optimal-cost path to a

point inside the blind region must include the approach path from the start to the
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diffraction vertex. The path-planning problem from the diffraction vertex to the

goal is a subproblem and the solution path for this subproblem must be within

the wedge defining the blind region. If a diffraction vertex-to-goal solution path is

found, it can be appended to the stored approach path, resulting in a start-to-goal

solution path.

Goal

Low Cost - -

C

High
Cost Middle

Cost

A
B

Low Cost

C

Start

Figure 85. Locality Aspect of Snell's Law

A final difficulty with Snell's law stems from the totally localized nature of the

criteria. Consider a situation similar to that depicted by Figure 85. In terms of

cost, let region C be the most favorable, region A the next best and region B be

the least-favorable region. Snell's law simply perturbs the original straight-line

start-to-goal path until an optimal-cost path involving regions C and B is
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determined (as represented by the solid line). The law has no ability to consider

@alternate paths involving region A, even though the optimal-cost path could easily

be similar to the dashed line path of Figure 85. Thus, Snell's law implicitly relies

on proposing a straight Start-to-Goal line as an initial path. The law ignores more

favorable adjacent areas unless either the initial straight-line path intersects them

or the optimization procedure accidentally perturbs the path into an intersection

with them.

This situation can lead to a form of the same problem that affects the

wavefront-propagation technique, i.e., combinatorial explosion and computational

excess. Solving the weighted-region problem by applying Snell's law to a large

number of distinct regions requires that each region vertex within some

circumscribing limit be specifically examined. The problem is somewhat less

serious than in wavefront propagation because the size of each individual area

requiring examination is generally much larger (and thus there are fewer region

vertices in the same area) than the areas used in a lattice representation.

However, if a path involving a significant distance from the start location to the

goal location is required, the size of the areas has less of an ameliorating effect.

Moreover, the type of technique we are attempting to develop must produce a

solution efficiently to be valuable. It does not appear that a method which must

"look everywhere" can fulfill this requirement. Extending the situation in Figure

85 to its absolute limit when many small distinct regions are present. the

application of Snell's law is tantamount to using an increased-overhead

wavefront-propagation technique.
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Situations similar to those depicted by Figure 85 represent only one class of

problems that must be addressed when applying Snell's law to imtances of the , ^Vv

weighted-region problem. Whenever a large number of distinct homogeneous-cost

regions occupy the problem space, their juxtaposition as well as their

superimposition create difficulties. Consider a situation similar to that depicted in

Figure 86. Let the regions A through E become progressively less costly as they

move left of the straight-line start-to-goal path. Such a circumstance can occur in

the real world when a mountaintop lies immediately between the start and goal.

Traveling directly over the crest encounters greater elevation change and thus

requires greater effort and cost (minimizing time). As the path shifts to the side of

the crest, steepness, effort, and cost decrease. The problem of finding the least-

cost route here reduces to locating the best tradeoff point between increased

lateral distance and decreased cost to move forward. We can develop simple

mathematical criteria, such as depicted in Figure 87, to determine the optimal

tradeoff point for these special cases.

In Figure 87, let U1, U2, U3 and U4 represent region cost rates. Let dl, d2, d3

and d4 denote Euclidean distances. Let A and B mark the start and goal

locations. Let 0, and 02 be angular measures. The path of small dashes represents

a known start-to-goal path. The large dashed lines indicate normals to the cost

rate U2 region boundary. The heavy line represents a possible path through the

adjacent region. Then solving the equations:

sin(e1)= U4/ U2

sin(e 2) = U3/ U2

produces the minimum-cost path through the adjacent region.
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Figure 86. Adjacent Homogeneous-Cost Regions
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Substituting the sin(O) values into the equation below determines the. best

path. If the inequality is true, the path through the adjacent area is best.

Otherwise, the straight-line path is preferable. Note that the below formula can

be used to specify how far away an adjacent area having a known cost rate can be

located and still have the possibility of containing the optimal-cost path.

dl 1 d3sin(91) d4sin(n 1)

1> d3d
+- 1/2 /21

U3 itn U4 1/22( J)

The situation depicted in Figure 86 and the result developed in Figure 87 do

not consider superimposed homogeneous-cost regions and both posit uniform-cost

regions on the approach to each of the lateral regions (A, B, C, ... ). The

occurrence of such specialized cases in the real world is not likely. The main

roint is that it appears that the only way to determine the least-cost path in such

real-world cases is to compute the actual cost of routes through each region

(within some circumscribing limit) and make comparisons. Again, we have the

"look everywhere" phenomena, the very problem that we are attempting to avoid.

K. SUMMARY

Snell's law can serve as the local optimization criterion of a solution technique

for the weighted-region problem. The law is well-suited for application to

homogeneous-cost region problem representations. Based on Snell's law, wedges

within the search space can be created. There are several methods to eliminate a
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wedge from consideration in efforts to solve the weighted-region problem. Both

upper and lower bounds on path cost are useful in the pruning process.

Precomputed, cached information can be used in constructing bounds, however,

such knowledge is not required.

Snell's law also has some characteristics that are not well-suited to the

weighted-region problem. These include dealing with obstacles, total internal

reflections, blind regions and the localized nature of the law itself. These aspects

of Snell's law must be compensated for strategically, by a control algorithm.

Developing such an algorithm that exploits the characteristics of Snell's law is the

subject of the following chapter.

2..
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V. SNELL'S-LAW-BASED A* SEARCH

A. INTRODUCTION

Section IV.C derived Snell's law as a consequence of using partial derivatives

to solve a minimum-cost path planning problem. The Continuous Dijkstra Algo-

rithm (CDA) reported in [Ref. 42] establishes an algorithmic precedent for relying

on Snell's law to solve the weighted-region problem. Thus, the applicability of the

law is clear. Snell's law provides the basic guiding principle for a search strategy,

as does the straight-line principle for binary-case techniques. Both are local

optimality criteria. In this chapter, we develop a weighted-region-problem algo-

rithm, based on Snell's law, that offers the potential for improved average-case

performance (in both time and space) over all competing techniques.

Recall that Dijkstra's algorithm (and thus the continuous Dijkstra technique

itself) is an uninformed strategy. The preceding chapter developed methods to

evaluate upper and lower bounds on the cost of possible start-to-goal paths

through specific wedges. The evaluations are based on a knowledge of the goal

location. The cost bounds can also be used to rate wedges; the wedge having the

lowest lower-bound cost evaluation should be rated as the most favorable wedge

and be the first wedge refined. Thus, we have a method to order the search of a

set of wedges, based on their likelihood of containing the/4timal solution. By

definition, we have the elements necessary to construct an agenda-based informed
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search strategy. A* search is the archetypal informed strategy and serves as the

basis for the algorithm we present.

To utilize A* search, the homogeneous-cost region problem representation

must be converted into a search graph. A similar technique is applied to binary-

case problems by the successful VGraph algorithm. A salient difference is that the

binary assumption is untenable in the general-case weighted-region problem. As a

result, feasible turning points on solution paths are not limited to the members of

a finite set of predefined region vertices. Thus, a finite predefined graph of region

vertices will not provide a solution path for the general-case weighted-region prob-

lem. Our algorithm relies on Snell's law to dynamically create a graph of wedges

that correspond to areal subdivisions of the physical environment. Recall that

three sub-wedges can be created from a single wedge based on the Snell's-law

path to the closest unsolved search point within that wedge. Thus, in general, the

search graph that we construct has a branching factor of three.

At this point in the discussion it seems appropriate to define the search space

for our problem. The start state has two initial wedges, a feasible start-to-goal

solution path (which may or may not have optimal cost), and a lower-bound

evaluation for each the two initial wedges. The lower-bound evaluation for a

wedge is based on the cost of a possible start-to-goal path within that wedge.

The single operator to transform states is wedge refinement, or the creation of

sub-wedges based on the Snell's-law path to the closest unsolved search point

within the wedge being refined. Thus, each search state in the search space is a

refinement of its successor state and includes a wedge, the least-cost start-to-goal

solution path found so far, and a lower-bound evaluation for that wedge. The goal
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state is reached when every -state in the search space includes a lower-bound

evaluation that is greater than the cost of the least-cost start-to-goal path that

has been found.

As a basic strategy, we rely on Snell's law to create, refine, rate and search

wedges corresponding to nodes in a graph. Upper and lower bounds on the cost of

possible paths through wedges are used. Wedges are refined (and removed from

the search space) in order of their lower-bound cost evaluations. If the evaluation

for the wedge having the lowest lower-bound cost evaluation exceeds the upper

bound, the search terminates. Figure 88 depicts a preliminary version of the con-

trol flow for the algorithm that we use for explanatory purposes. A final version of

the algorithm control flow is provided at the end of this chapter. Much of the

remainder of this chapter is devoted to explaining the actions required in each box

S of Figure 88.

We also note a subtle assumption that underlies our algorithm development.

We assume a ternary-cost map (as defined in Section IV.B) since it is the simplest

classification scheme that includes the difficulties associated with non-binary

region descriptions. The algorithm we develop requires only minor modification to

solve arbitrary weighted-region problems, including those that represent any

number of different cost rates. We also note that a ternary scheme is appropriate

for some important autonomous agents [Ref. 27.441. Also, classifications based on

local sensor equipment are often, at best, ternary in nature.

A final introductory remark concerns the figures used in this chapter. Most of

them are not produced by actual data provided by a functioning program. These

S figures are intended for illustrative purposes only and have no need of exact
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fidelity. (We note that Chapter VI and the Appendix contain many illustrations

, generated from an implemented Snell's-law-based algorithm as it solves different

instances of the weighted-region problem.) There are some exceptions. Figures 95

through 99 in Section E are produced from tracing actual Snell's-law paths

through high-cost regions. Also, Figure 122 is a (bit map) copy of a graphics

screen produced by a working Snell's-law-based algorithm during execution. All

other figures in this chapter are artificially created.

B. INITIALIZATION

Initialization must be performed for each specific weighted-region problem to

be solved. The algorithm assumes access to an appropriate, ternary-cost map.

Chapter IV presented two primary methods of obtaining an upper bound on theecost of an optimal start-to-goal solution path. In the absence of stored informa-

tion, the problem can be treated as binary (ignoring cost regions but considering

obstacles) to obtain a feasible solution. The actual cost of a feasible solution can

be calculated on the ternary map. If stored information is available, an upper-

bound point-to-point cost evaluation can be directly computed. Either method

results in a satisfactory upper bound (on the cost of the optimal solution path) for

initialization requirements. Let the cost of the feasible solution path (calculated

on the ternary map) be U. Note that the cost U also serves as an initial globally-

known upper bound on the cost of the optimal-cost solution path. This upper

bound may be replaced during the solution process when a lower-cost feasible

start-to-goal solution path is found.
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Suppose that the optimal cost rate for the ternary-cost map is CO (recall that

this is a scalar cost per unit of distance traveled). We wish to construct an ellipse

that physically contains the optimal-cost solution path and then circumscribe this

ellipse by a rectangular bounding box. The major axis of the ellipse is equal to the

rectangle height while the ellipse minor axis is the rectangle width. Thus, the

major and minor axis of the ellipse must be computed, given U and C0 . (We note

that a method of constructing the ellipse was discussed in the previous chapter.

We now provide a construction m(thod that is more procedurally oriented and is

suitable for constructing the rectangular bounding box as well.)

Figure 89 illustrates the required computation. Let the distance from the start

to a point on the ellipse boundary plus the distance from that point to the goal be

DE. The maximum distance that can be traveled along any path while the cost of

that path does not exceed U occurs when the entire path can be traveled at cost

Co .Thus,

U = DE x CO

DE = /O

Let d(P1 ,P 2) denote the Euclidean distance from point P to point P2. By con-

struction (refer to Figure 89)

d(Start,B) + d(B,Goal) = DE

d(Start,Goal) - d(GoalB) - d(B.Goal) = d(Start.B) + d(B.Goal)

By definition of an ellipse,

d(A,Start) = d(B,Goal)

Therefore d(A,Start) + d(Start,Goal) + d(Goal,B) = DE

and the ellipse major axis is DE = U/ CO
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Let M be the midpoint of the start-to-goal line segment and let the line seg-

ment M- C be perpendicular to the Start -Goal segment. Then, by construction,

d(Goa,C) = d(Start,C) =1/2DE

By the Pythagorean theorem,

d(Start,M' + d(M,C)'= (1/2D 2

d(M,C) = 1/4DE - d(StartM)2

d(M,C) = 1/4DE2 d(Start,M),

Let D., = d(Start,Goal). By definition, 1/2DSG = d(Start,M). Then, substitut-

ing,

d(M,C) = 1/ D2 - D2) 1/2

Since the ellipse minor axis is 2d(M,C) it is equal to

2D 2 ;1/2

Thus, we have the formulae to construct either an ellipse or a rectangular

bounding box suitable for physically limiting the problem search space. The

bounding box is the preferred structure since wedges are defined so that they ter-

minate when they intersect the limit of the search space. Computing the intersec-

tion of two line segments is simpler than computing the intersection of a line and

an ellipse.

The bounding box defines the physical space over which the search is to be

conducted. Accordingly, only those homogeneous-cost regions (including obstacle

regions) that lie, at least partially, within the bounding box need be considered

during search. Ray tracing is a fundamental operation in the Snell's-law-based
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algorithm. That is, given a point on a path and a heading from that point, ray

tracing is the process of finding the intersections of the path and region boun-

daries (or an intersection with the bounding box). Once the physical limits of the

search space have been defined (by construction of the bounding box), the algo-

rithm must examine that space to construct a set of boundaries (and vertices)

that it contains in order to limit the total set of boundaries considered during ray

tracing. It is often true that a region boundary lies within the bounding box while

one of its endpoints does not. In these cases, the algorithm creates an artificial

vertex called a boundary point where the boundary intersects the bounding box.

Then, the boundary points, the region vertices within the bounding box, and the

goal point form the set of search point-, as defined in Section IV.B. Note that the

search point set also defines the boundaries of homogeneous-cost regions and obs-

S tacle regions that must be considered during ray tracing. We denote these boun-

daries as the aearch boundarie8.

The next step required of the algorithm as depicted in Figure 88 is the crea-

tion of an initial wedge. At this point in the search process, very little is known

about probable locations for the optimal-cost solution path (assuming that stored

paths, as described in Section IV.I are not available). Thus, the initial wedge

should not eliminate any portions of the bounding box from the search effort. To

ensure that no area is overlooked, two initial wedges are created so that they do

not overlap but the two of them together contain all the area within the bounding

box.

The initial wedges can be created by a simple procedure. Assume that the

straight-line start-to-goal path has a heading of Hs (refer to Figure 90). Form
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heading H I by rotating clockwise 90 degrees from HsG Conduct ray tracing on a

path from the start having heading H until it terminates (by, for example, inter-

secting an obstacle or one side of the bounding box). Call this path RR. Form

heading H 2 by rotating 90 degrees counter-clockwise from HSG and conduct a

similar ray tracing, resulting in path RL. Paths RL and RR define two initial

wedges, denoted as the upper and lower wedge in Figure 90. The upper wedge has

RL as a left boundary and RR as a right boundary. The lower wedge has RR. as a

left boundary and RL as a right boundary. Both wedges have the start location as

a wedge tip. Clearly, the two wedges cannot overlap and together, they contain

every point within the bounding box.

Once the two wedges are created, they can be rated by the criteria established

in Chapter IV. Point-to-point lower-bound cost evaluations (from the wedge tip

to the goal) can be used for both wedges since it is impossible for RL and R. to

form a K-explored wedge for K > 0. The ordered agenda is initialized to contain

both the upper and lower wedges which have the same lower-bound cost evalua-

tion.

Finding a feasible solution, constructing the bounding box, establishing the

search point and search boundary sets, and creating the agenda fulfill the initiali-

zation requirements. The general algorithm can now be applied to solve a specific

instance of the general-case weighted-region problem.
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C. SELECTING A WEDGE FOR REFINEMENT

The agenda is a list of wedges ordered in terms of increasing lower-bound cost

evaluations for possible start-to-goal paths that they might contain. Given such

an ordering scheme, selecting the most favorable wedge for refinement amounts to

choosing the first wedge on the agenda. The chosen wedge must be removed from

the agenda, in the spirit of the A* algorithm. Recall that A* also requires the

maintenance of a Closed list (a set of previously expanded nodes) to prevent

duplication of search effort and infinite cycling. Cycle avoidance is also important

to this version of A* search although there is a more efficient method to achieve it

than through use of a Closed list. As explained below (in Section V.G) cycles are

prevented by exercising care when new wedges are added to the agenda.

Our algorithm utilizes a termination criterion slightly different from that gen-

erally used in A* search. The A* search strategy normally terminates when the %

first element on the agenda (i.e., the most favorable partial solution) is a complete

solution. Our algorithm does not store partial solution paths on the agenda;

rather, partially explored physical spaces (in the form of K-explored wedges) are

retained. However, our algorithm does maintain an upper-bound evaluation that

corresponds to the cost of the best known start-to-goal path found so far. The ter-

mination criteria is met when the first element on the agenda (i.e., the wedge with

the lowest lower-bound cost evaluation) has a cost evaluation that exceeds the

upper-bound cost evaluation. The agenda is ordered, so every other element on

the agenda must also have an evaluation greater than the upper bound on the

cost of the optimal solution path and the search can stop since it can no longer be

profitable. Search can also halt when the agenda is empty. In either case, the
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known solution that has least cost is returned as the optimal solution. A feasible

solution is always known since one must be computed during initialization.

Optimality of the solution is guaranteed by the correctness of the pruning criteria

developed in the preceding chapter.

D. LOCATING THE CLOSEST UNSOLVED SEARCH POINT

Recall that refining a wedge is accomplished by determining the closest

unsolved search point within the wedge, calculating the Snell's-law path from the

wedge tip to that point, splitting the path into two paths at the search point, and

selecting pairs of paths to define new sub-wedges. Thus, locating the closest

unsolved search point is fundamental. The procedure to find this point can be

aided by descriptions of the paths that define the wedge boundaries.

S Our algorithm describes individual paths as a series of turn points. This is

intuitively appealing since the path segments must be (straight) line segments

within each homogeneous-cost region. Heading changes only occur at boundary-

crossing episodes (when the path intersects a region boundary) or when the path

includes a diffraction vertex (in this sense, diffraction vertices correspond to null

boundary-crossing episodes). For each boundary-crossing episode, the X and Y

coordinates of the path intersection with the boundary, a designation of the boun-

dary being crossed, and the cost rate along the path just before intersecting the

boundary are recorded. At diffraction vertices, the coordinates of the vertex, a

special designation of the null boundary, and the cost rate just before reaching the

vertex are recorded. Including the cost information is helpful for several reasons.

S It allows path costs to be easily computed, referencing only the path itself. Also,
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note that two cost rates must be associated with each boundary, one inside a

region and one outside the region. Knowing one cost rate allows the other to be

easily determined.

This representation for the wedge boundary-defining paths facilitates locating

the closest unsolved search point within the wedge. We accomplish this by form-

ing polygons that describe portions of the wedge and inspecting those polygons to

find any search points that they contain. Procedurally, the process starts at the

wedge tip and follows along the wedge-defining paths up to their first non-null

boundary-crossing episode. If the two paths intersect the same boundary at their

first boundary-crossing episode (their path descriptions designate the same boun-

dary other than the null boundary), we form a triangle whose vertices are the

wedge tip, the first intersection on the left path, and the first intersection on the

right path (as illustrated by the striped region in Figure 91). Then, those search

points within the triangle can be determined as explained below. (Note that any

search points on either wedge-defining path should not be considered. Otherwise,

duplicate paths will result.) If such points exist, the one closest to the wedge tip

is selected as the closest unsolved search point.

If the triangle contains no search points, a second polygon, again based on the

two wedge-defining paths, can be formed. Suppose that the two paths intersect

the same boundaries at their first and second boundary-crossing episodes, as in

Figure 92. Then a quadrilateral, whose vertices are the first two intersections of

the left path and the first two intersections of the right path, can be formed.

Again, this polygon can be examined to determine those search points that it con-

tains. Of those points, the single point closest to the first boundary (i.e., the
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boundary that causes the first boundary-crossing episode for both wedge-defining

paths) can be selected as the closest unsolved search point. If the polygon contains

no search points, a new quadrilateral based on the second and third boundary-

crossing episodes of the wedge-defining paths can be constructed. Here, proximity

to the second boundary (instead of the first) is used to determine the closest

search point. This process can continue until the wedge-defining paths intersect

different boundaries or terminate. If no closest unsolved search point has been

found, the wedge is empty and need not be searched.

In most cases, the wedge-defining paths will intersect different boundaries at

some point. When this occurs, one endpoint of each of the two different boun-

daries must be inside the wedge and must be unsolved for that wedge. (Note that

the different boundaries intersected may share a common endpoint.) Here, either

a pentagon (if the wedge tip is a vertex of the polygon that will be inspected to

determine the search points that it contains) or a hexagon (otherwise) can be

formed. This polygon must contain an unsolved search point. Figure 93 illustrates

the hexagonal case. Figure 93(a) depicts the two paths as they intersect different

region boundaries at their third boundary-crossing episode. The striped hexagon

in Figure 93(b) is the polygon used to determine the closest unsolved search point.

Here, vertex P2 is the closest search point to boundary B and is thus the closest

unsolved search point within the wedge. (Proximity to the wedge tip can be

misleading when the wedge tip is not in the polygon.)

In the process of finding the closest unsolved search point, the wedge may be

found to be empty (i.e., contain no search points), making further refinement

impossible. Clearly, such wedges can be pruned from the search. Other
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opportunities for pruning also exist. Suppose both wedge-defining paths intersect

the same obstacle, on any of the obstacle's boundaries. If the wedge contains no 6

search points between the wedge tip and the obstacle, it can be pruned since, by

Theorem 2, every other path within the wedge must also intersect the obstacle.

Pruning according to Lemma 11 is also easily accomplished by the procedure

designed to find the closest unsolved search point. Proceeding one boundary at a

time also facilitates determining if and when wedge-defining paths intersect.

Recall that such intersections terminate wedges.

The efficiency of the point locating process can be improved. It is not neces-

sary to examine every possible polygon that can be formed by consecutive

boundary-crossing episodes within the wedge. Some of these polygons close to the

wedge tip, in the general case, will have already been examined. A wedge is

refined from a parent wedge. Thus, some polygons that can be formed within a

wedge are simply smaller versions of those that have already been examined

within a parent wedge. If a polygon within the parent wedge has already been

examined and found to contain no search points, there is no point in re-examining

a (smaller) subdivision of it at some later time. Thus, marking portions of wedges

as already examined (based on the examination of parent wedges) can save some

effort later. (This marking could be accomplished by storing another data item in

the path descriptions of the wedge-defining Snell's-law paths.)

Indexing t.he members of the search point set by their position on the area-

cost map can enhance efficiency. Such indexing allows some search points to be

quickly eliminated from the search for the closest unsolved search point. As an

example, a polygon located entirely in the lower left corner of the map cannot
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contain search points from the upper right corner. Intelligent indexing can make

such occurrences readily apparent. As an example, we can divide the area-cost

map into disjoint blocks and store the search points as sets of points inside

specific blocks. That is, all of the search points located inside a single block can

be stored together. The search point set could be organized in this manner by

using two hash function., [Ref. 46] one for X coordinates and one for Y coordi-

nates. Then, we can determine the blocks touched by a wedge (or portion of a

wedge) by hashing on the minimum and maximum X and Y coordinates on the

Snell's-law paths defining the wedge. Retrieving only those blocks containing

search points in the vicinity of the wedge could decrease the total number of

search points considered during the search for the closest unsolved search point.

Also note that region vertices that are already on either wedge-defining Snell's-law

path are not considered in selecting the closest unsolved search point. Selecting

any of these points would result in self-intersecting wedges that could not lead to

optimal-cost solution paths.

Once a polygon has been formed, there must be some relatively efficient

method to determine those points from a given set, if any, that are inside that

polygon. (For general-purpose methods of positioning a point with respect to a

polygon, see [Ref. 47, p.3301.) The polygons may be non-convex (as in Figure 93),

somewhat complicating the issue. Our algorithm relies on a simple strategy to

compute interior points. For each candidate point, we construct a horizontal line

segment from that point to one side of the bounding box. If this segment has an

odd number of intersections with the constructed polygon, the point is inside the

polygon. If the number of intersections is even, the point is outside. A problem
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arises in this scheme if the candidate point has the same Y coordinate as some

vertex of the polygon [Ref. 48]. When the X coordinate of the vertex is on the

horizontal line segment, the other endpoints of the polygon sides that share the

conflicting vertex as a common endpoint must be examined. If both of these end-

points are either above or below the horizontal line, no intersection is tallied for

those two polygon boundaries. Otherwise, one intersection is counted and neither

of the two boundaries is considered further for that candidate point. (This

assumes that neither of the two endpoints also has the same Y coordinate as the

candidate point. If this is not true, the procedure must "follow around" the

polygon sides until some vertex has a different Y coordinate.)

The rationale for choosing the closest unsolved search point is based on the

requirement to find Snell's-law paths. By the above procedure to find these points,

the wedge must be K-explored up to the closest unsolved search point. By

Theorem 2, the Snell's-law path from the wedge tip to that point must intersect

the same K boundaries in the same order. Thus, ray tracing is facilitated by

knowing in advance the exact sequence of boundary-crossing episodes that must

occur. This is valuable knowledge because it allows the ray-tracing routine to

know, without search, the next region boundary to be intersected after each

boundary-crossing episode on the Snell's-law path.

There is no known closed-form solution yielding the Snell's-law path between

two arbitrary points. Instead, iterative ray tracing must be performed until a path

is constructed that comes acceptably close to the desired search point. Developing

a suitable iterative search strategy is the topic of the next section.
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E. ITERATIVE SOLUTION OF SNELL'S LAW

A solution to the problem of finding a Snell's-law path between two points is

a path that begins at the first point and travels within some specified tolerance of

the second point, obeying Snell's law at each boundary-crossing episode along the

way. In this sense, an iterative solution to a Snell's-law point-to-point problem is

a minimization problem, minimizing the distance from a specific path to a known

point. Before the iterative search begins, we must know that the solution path is

within a specific wedge. The wedge is defined by left and right boundary Snell's-

law paths. Thus, the wedge-defining paths bracket the Snell's-law solution path.

That is, one Snell's-law path lies entirely to the left of the solution path and the

other Snell's-law path lies entirely to the right of the solution path. By Theorems

1 and 2, we know that there is a single Snell's-law path, within the wedge, that

exactly contains the search point.

For notation, we define newdiat(X) as a function that returns the minimum

distance from a Snell's-law path to a (constant) point, given X, a description of

the first boundary-crossing episode on the path. Figure 94 illustrates the

definition. Here, the region boundary is indicated by the heavy line and P is the

intersection point of the first boundary-crossing episode for Snell's-law path RP.

Let RL and RR be the Snell's-law paths defining the wedge and let G be the

closest unsolved search point within that wedge. Let di be the distance from P to

PL, RL's first boundary-crossing episode. Let d2 be the distance from G to PRP,

the intersection of RP and an imaginary line that is parallel to boundary B and

that goes through point G (the dashed line in the figure). Then, by definition,

newdiat(d) = d2
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uniquely determines the X distance for that path, measured on the Kth boundary.

Thus, we know that newdit(X) is a quasi-convex function having a single

minimum value. Based on Theorem 2, this minimum occurs when

newdist(X) = 0 and X determines a Snell's-law S-to-G path. Thus, any standard

one-dimensional search technique, such as bisection or golden section search, is

suitable for solving a Snell's-law point-to-point path problem. These standard line

search techniques are sufficiently powerful to find minimum values for arbitrary

continuous functions. We prefer a method that exploits knowledge about the

newdiat (X) function to quickly converge to a minimum.

Figures 95 through 99 illustrate a new function, close (X), which is a modified

version of newdist (X). This new function is a modification of newdist (X) because

the value of d2- is taken to be negative for those paths traveling to the left of the

~ goal and positive otherwise. In this case, the single minimum value of newdiet (X)

occurs at the point where close (X.) intersects the horizontal axis. We have defined

close(X) in this manner for illustrative purposes. In each figure, d2 is plotted

along the vertical axis while the horizontal axis reflects d, values. The Snell's-law

paths and the cost regions used to generate the curves are shown in the inset for

each figure. In the inset, paths enter the (bottom) high-cost region at uniform

intervals along its lower boundary. The goal used in the computation is not

shown. Note that the only effect of the goal location (within same the wedge) is to

shift the horizontal axis up or down.

In Figure 95, the two boundaries of the high-cost region are parallel. In this

case, close(X) is linear. Figures 96 and 97 show that when Snell's-law paths

intersect non-parallel high-cost region boundaries, a "bend" can result in the
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close (X) curve. The amount of the bend is determined by the range of rotation

amounts of the Snell's-law paths as they exit the last boundary. The rotation

amount is invariant in the number of boundary-crossing episodes and is limited to

a total range of 180 degrees. Figure 98 was generated by paths crossing two high-

cost regions. Note that the close (X) curve here is similar to the preceding curves.

However, multiple regions can have the effect of introducing multiple bends into

the curve, as illustrated by the problem shown in Figure 99. In each figure, large

portions of the curve are nearly linear which suggests that a secant search, as

illustrated in Figure 100 is an suitable iterative search strategy.

An important variant of secant search is known as the false position method

[Ref. 49]. The technique relies on two bracketing values to interpolate a value to

be used on the next iteration. The interpolated value should result in a path that

S lies between the two bracketing paths. Thus, on each iteration, either the left or

right bracket value can be replaced, resulting in a bracket interval that becomes

progressively smaller until an optimal solution (within some specified tolerance) is

found. False position searches of this nature are guaranteed to converge.

Convergence of false position searches can be slow when the minimum is con-

stantly approached from only one side. The curve in Figure 100 is the type that

yields this kind of slow convergence. Here, the right side bracket value is replaced

on every iteration and the left side bracket value remains unaltered for the entire

search. An iterative search technique can converge more quickly when alternate

bracket values are replaced on successive iterations. We facilitate this behavior by

adding some heuristics to the basic false position method.

263

I
wqm



right bracket
value

close(x) for
interpolated value

di

interpolated value

left bracket
value

Figure 100. A False Position Method, Secant Search

264



The line search technique that we use is a modification of false position search

, that keeps track of which bracket value is replaced on each iteration. When the

same value is to be replaced on successive iterations, the algorithm "boosts" the

interpolated value, based on the amount of error in the last interpolation. (See

Figure 101.) When this fails to alter the replaced bracket value after three itera-

tions (simply a heuristic), the algorithm returns a bisection between the unre-

placed bracket value and the interpolated value, as in Figure 102. Generally, the

bisection causes the alternate bracket value to be replaced. We denote this

method of search as heuristic false position search.

Table 13 compares the performance of bisection, golden section, standard false

position method and the heuristic false position method searches. Each technique

was used to solve the same set of 100 point-to-point Snell's-law problems. These

*problems were chosen at random, the only requirement being that the path

between the selected points must intersect all high-cost region boundaries in the

problem. When the close (X) function returned a value of 0.01 units or less, the

problem was considered to be solved. The mean, standard deviation, minimum

and maximum columns of Table 13 refer to the number of iterations required to

solve each problem (note that a single high and low number of iterations for each

method was discarded). The test problems featured different cost ratios between

homogeneous-cost regions, region configurations, and number of boundary-

crossing episodes on the path. Different initial bracket values were also used. The

standard false position method was most affected by altering initial bracket

values, due to its "one sided" approach to the minimum. The performance of the
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heuristic false position method supports its selection as the line search technique

used in our algorithm.

TABLE 13
ITERATIONS REQUIRED TO CONVERGE WITHIN 0.01 UNITS

IN 100 TEST CASES
Search Standard
Type Mean Deviation Minimum Maximum

Bisection 12.48 3.11 6 22
Golden

Section 13.14 3.21 6 21
False
Position 14.60 16.11 2 76
Heuristic
False 5.55 2.21 2 11
Position

F. WEDGE REFINEMENT

Once a Snell's-law path to the closest unsolved search point is found, that

path can be used to refine the wedge that contains it. Let Rp be such a path to

point P. Refinement (in general) is accomplished by "splitting" RP into two dis-

tinct paths at P. There are three possible classifications for P; it can be either a

homogeneous-cost region vertex, an obstacle region vertex, or the global goal. The

classification of P affects the split operation.

When P is a region vertex (either obstacle or high-cost region), RP acts as a

physical limit for paths to its left and right. Let RL be a path that lies just to the

left of Rp and let R. be a path that lies just to the right of RP, all three paths

within the same wedge, W. Since P was the closest unsolved search point within

W, RL, Rp and RR must all intersect the same sequence of K region boundaries

up to P. However, since P is a common endpoint of two region boundaries, paths
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RL and RR must intersect different region boundaries at their K+1'st boundary-

crossing episode.

Let P be a high-cost region vertex and let B1 and B2 be the two region boun-

daries that share P as a common endpoint. Assume that RL and RR travel

infinitesimally close to P (and thus infinitesimally close to RP as well) on its left

and right respectively. Each of RL and RR can either intersect both B1 and B.,

one of them, or neither of them. (We illustrate such intersections in Figures 103,

104, and 105.) Let Pi be the other endpoint of B, and P 2 the other endpoint of

B 2 . Let RE be the extension of the last path segment of RP from P outward. If

both P1 and P2 lie to the left of RE then RL must intersect at least one of B i and

B 2 and path RR intersects neither of them. If both P1 and P2 lie to the right of

RE, then the converse is true. When P1 lies to the left of RE and P2 to its right,

then RL intersects B, (at least) and RR intersects side B2 (at least). Figures 103,

104 and 105 illustrate the three cases respectively. Note that in Figure 103 RE and

RR are collinear and in Figure 104, RL is collinear with RE.

At first thought, it seems that there could be three other cases where the

region intersected by RE is a low-cost region instead of a high-cost region. How-

ever, note that each region boundary in Figures 103 through 105 can also be

thought of as a low-cost region boundary since each boundary separates a high-

and low-cost region. Thus, the illustrations are sufficient to cover the general

cases. Exceptions to the general cases can occur, as described below.

Figures 103 through 105 depict the general cases of paths RL and RR contin-

ued infinitesimally close to P. It is possible that both P1 and P, lie on the same
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side of RE but that the path also on that side of RE intersects only one of B, and

AB This situation is illustrated in Figure 106. Similarly, P1 and P 2 can lie on

opposite sides of RE and a single path can intersect both B1 and B 2, as shown in

Figure 107. To detect these situations, the angle formed about P by sides B, and

B 2 must be compared to the heading of the new path as it exits the first

homogeneous-cost region boundary intersected.

Given that RL and RR are correctly traced through the region boundaries

sharing P as a common endpoint, then the original wedge W containing Rp can

be refined into three new sub-wedges, as illustrated in Figure 108. Suppose that

the Snell's-law path defining the left side of W is RBL and W's right boundary is

defined by path RER. Then RL and RBL form one sub-wedge and RR and RDR

form another. Both of these sub-wedges have the same wedge tip, the wedge tip ofeW. Also, RL and R, together form a new sub-wedge that has P as a wedge tip

and Rp as an approach path. Denote these three sub-wedges as WL, WR and WM

respectively. In many cases, the middle sub-wedge WM is empty because RL and

RR intersect each other at P. Whenever P is a vertex at a non-convex angle of a

high-cost region and Rp is exiting the region through P, sub-wedge WM is not

empty. The same is true when P is a convex vertex of a high-cost region and Rp

is entering the high-cost region through P. In all other cases, sub-wedge WM is

empty. These results are supported by Lemmas 6, 7, 8 and 9. Thus, paths to

high-cost region vertices can give rise to three new sub-wedges, as illustrated in

Figure 108. (Note that Figure 108 does not include Snell's-law paths to vertices

P or P 2 of the high-cost region. In the situation illustrated, neither of these
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region vertices has qualified as a closest unsolved search point (within wedge W).

After the refinement of W, Snell's-law paths to P and P2 could be used to refine

sub-wedges WL and W. respectively.)

When P is an obstacle region vertex, the only paths that are subjected to the

splitting operation are those that do not intersect either of the two region boun-

daries associated with P. Recall that, by definition, Snell's-law paths terminate

when they intersect an obstacle boundary. When both RL and RR intersect the

obstacle region, the original wedge can only be refined into two new wedges, based

solely on P. Figure 109 depicts this type of wedge refinement where sub-wedges

WL and W. are refinements of the original wedge, W. When either RL or RR

bypasses the obstacle region, three new sub-wedges can be formed, as illustrated

by WL, WM and W. in Figure 110.

When P is the global goal, there is generally no need to split the R. path. By

the time that the global goal becomes the closest unsolved search point, no further

refinement of the wedge is, in general, profitable. However, when the goal is

embedded inside a high-cost region, there can be several paths to the goal within

the same wedge. Some of these paths involve critical-angle reflections, as dis-

cussed below in Section V.H. At this point in the discussion, it is sufficient to note

that a path to the global goal need not be split for wedge refinement. However,

when the goal is embedded, the wedge that contains it may be the subject of

further search. To facilitate this, the path from the wedge tip to the goal is con-

tinued until it terminates and the wedge is refined into two sub-wedges. Figure

111 illustrates this type of wedge refinement. Figure 111(a) shows only the path
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from the wedge tip to the embedded goal within the original wedge. (Note that

the box around G in Figure ill does not depict a cost region; it serves to allow

the letter "G" to be read. A similar scheme is used later in Figures 112(a) and

(b).) Figure 111(b) depicts the refinement of the wedge based on continuation of

the path from the wedge tip to the goal G.

One other consideration is important when P is the global goal. In this case,

RP is a feasible solution path that has a computable cost. This cost is an upper

bound on the cost of the optimal-cost solution path. Whenever the cost of Rp is

less than the current upper-bound cost, it becomes the new (less costly) upper

bound and RP is retained as a possible solution.

G. ADDING NEW WEDGES TO THE AGENDAeWedges are maintained on an ordered agenda so that the wedge having the

lowest lower-bound cost evaluation is the first element of the agenda. The lem-

mas developed in Chapter IV are used to rate the wedges. Either point-to-point

evaluations (from the wedge tip to the goal for O-explored wedges) or boundary-

to-point evaluations (from the Kth boundary to the goal for K-explored wedges)

added to the cost of the minimum-cost path through a K-explored wedge can be

used. If a wedge has an approach path then, by definition, any other path within

the wedge must use that approach path and incur its cost. This cost is known and

can be added into the evaluation. Given that such lower-bound evaluations can

be made, it is a simple matter to maintain the agenda as an ordered list.
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Care must be exercised when adding new wedges onto the agenda to ensure

cycle avoidance. The agenda must not contain duplicate copies of the same

wedge. If duplicates exist, they will have identical cost evaluations and duplicates

can thus be easily detected and eliminated. In the standard A* algorithm, cycle

avoidance requires keeping a Closed list and checking every agenda candidate to

ensure that it has not already been removed from the agenda at some previous

time. A simple way to avoid duplication in our algorithm relies on the fact that

duplicate wedges must be constructed from duplicate Snell's-law paths. Thus,

whenever a duplicate path to any search point is computed, wedge refinement as

well as agenda update are not necessary.

Recall that there are several other times when a new wedge need not be added

to the agenda. If the wedge's lower-bound cost evaluation exceeds the current

upper bound, it can be pruned. Also, if the wedge relies on an approach path to

the wedge tip and another lower-cost path to the same wedge tip exists, the

wedge can be pruned. A new wedge can be discarded if it is empty. Finally,

Lemma 11 can be applied to eliminate new wedges.

H. TOTAL INTERNAL REFLECTIONS

The previous section completes the discussion of each box of Figure 88, the

control flow of the basic algorithm. This version. of the algorithm- does not include

considerations for all of the limitations associated with applying Snell's law to the

weighted-region problem, as presented in Section IV.J. The major limitation con-

cerns total internal reflections. Almost every routine in the algorithm must be

aware of this phenomena.
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Recall that the possibility of a total internal reflection can only arise when a

,path attempts to exit a high-cost region into a low-cost region at an angle of

incidence greater than the critical angle. Here, Snell's law does not apply to the

path-planning problem because adherence to the law requires that the path "dou-

ble back" into the high-cost region. Clearly, such paths are not possible solution

paths for a weighted-region problem. There are only three types of reflection

paths that are interesting as possible portions of solution paths and all of these

use exactly the critical angle as an angle of incidence. First, a path may "cut-

out-of" a high-cost region at the critical angle and then travel right along the

region boundary that caused the reflection. Secondly, a path may travel along a

high-cost region boundary and then "cut-into" the region at the critical angle

(this is a reverse path of the first case). Finally, a path may travel along a region

Oboundary and then "cut-through" the high-cost region when its initial angle of

entry into the region is the critical angle (this is a continuation of a path from the

second case). A path that includes any of these critical angle reflections may be an

optimal-cost solution path. Therefore, our algorithm must be able to detect and

exploit such paths. Figure 112 illustrates the three cases.

When obeying Snell's law would cause a reflection to occur along a path dur-

ing ray tracing subsequent to a splitting operation, our algorithm ignores the path

angle of incidence with the boundary causing the reflection. Instead, we treat the

path as if it had intersected the reflection-causing boundary exactly at the critical

angle. This results in a path that exits the region, traveling right along the region

boundary. The algorithm notes that a reflection has occurred on the path by plac-

ing a special marker in the path description (similar to a null boundary marker).
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This treatment (i.e., ignoring the actual angle of incidence on the path) is justified

,because only critical-angle reflections are interesting. If some other path exits the

same boundary and also includes a reflection, the two paths together form an

empty wedge. (See Figure 113.) The empty wedge will be pruned. Similarly, ray

tracing need not be continued beyond the endpoint of the boundary causing the

reflection. It is pointless to waste ray tracing effort on a wedge that is likely to be

pruned. If the wedge is not empty (as described below), the ray tracing is com-

pleted after the critical-angle reflection path is computed.

When a second path exits the same boundary but does not reflect there must

be some point on the boundary that results in exactly a critical-angle reflection.

This is illustrated in Figure 114. Here, the wedge is not empty since it contains, as

a minimum, the point P3. The V-A-B-P path is marked as a reflection path

(during ray tracing). In this case, the critical-angle reflection path across boun-

dary B1 to point P 3 can be found without resorting to an iterative search. Instead

of starting at the wedge tip, start a hypothetical path at boundary B1 so that it

makes the critical angle with the normal to B1 as it enters the high-cost region

traveling in the direction towards the wedge tip. Trace this path back through the

boundaries between the wedge tip and B1 and note the angle e at which the path

exits the last boundary before the wedge tip (boundary B 2 in Figure 114). The

angles at each boundary-crossing episode along this path are invariant with lateral

displacement of the path itself. Thus, to create a critical-angle reflection path (not

based on iterative search) from the wedge tip to point P3 , construct a path that

starts at the wedge tip and makes angle 9 at its first boundary-crossing episode.

This backwards-forwards tracing operation results in the V-C-D-P 3 path of
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Figure 115, a critical-angle reflection path between V and P3. (The rectangle in

, Figure 115 that contains "B1 " is not meant to be a cost region.) Note that the

wedge formed by paths V-C-D-P 3 and V-A-B-P 3 is empty and need not be

created. Also, ray tracing must be applied to the V- C-D-P 3 path to complete a

wedge-boundary description.

1, C A B2P2

high-cost
regions

Figure 115. Finding The Critical-Angle Reflection Path

Paths beginning at wedge tips located inside high-cost regions must also con-

sider critical-angle reflection turns. We illustrate this case in Figure 116. (Note

that Figures 116 and 117 contain text boxes inside the high-cost regions; these

boxes do not denote region boundaries.) Suppose that S is embedded in a high-

cost region and that point P is the closest unsolved search point within wedge W.
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Clearly, a straight-line path from S to P is a feasible solution. However, critical-

angle reflection paths using sides B1 or B2 of the high-cost region, when they

exist, have lower path cost. Let RI and R 2 denote such paths as illustrated in Fig-

ure 117. Both R 1 and R 2 are easily constructed by creating paths that intersect

the appropriate boundary at the critical angle. One of the paths S-P, S-P 1 -P,

or S-P 2-P has least cost and can be chosen at the best S-to-P path. This choice

affects the refinement of the original wedge (wedge W of Figure 116) formed by

paths RL and RR.

Up to this point in the discussion, there has been only one Snell's-law path to

split when refining a wedge. When the wedge tip is embedded in a high-cost

region, as many as three such paths are available on which to base wedge

refinement. (Note that two of these paths are the "cut-out" paths as in Figure

112.) Recall that the purpose of refining a wedge is to define those boundaries

that are intersected by other paths through the sub-wedges and to define the lim-

its of the sub-wedges. Again, refer to Figure 117. If a critical-angle reflection path

across side B 2 exists, then the left side sub-wedge should be based on the

reflection path. Specifically, the left side sub-wedge must be based on the RL path

and the S-P 2 -P path. If side B2 does not allow a critical-angle reflection path to

exist, then the left sub-wedge should have the path resulting from ray tracing the

S-P segment as its right boundary-defining path. Similar statements hold regard-

ing the existence of a reflection path across side B1 of the high-cost region and the

right side refinement (sub-wedge) of W.
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When the wedge tip is inside a high-cost region, the refinement of the middle

sub-wedge must be treated somewhat differently. Clearly, the least-cost path of e.

the three possible S-to-P paths must be used as the approach path for the mid-

dle wedge. Suppose, in Figure 117, that S-P 1 -P-R 1 is the least-cost path S-to-

P path. Then the middle wedge must be formed by S-PI-P-R1 as a right

boundary and the continuation of the S-P 1 -P-I 2 path as a left boundary. Simi-

larly, if S-P 2 -P-R 2 is the least-cost S-to-P path, the middle wedge is defined

by S-P 2 -P-R 2 on its left and the continuation of the path S-P 2-P-I on its

right. When the path S-P is the least-cost path, neither side B1 nor B2 allows a

critical-angle reflection path to exist and the middle wedge can be normally

created, splitting the S-P path at vertex P.

The existence of critical-angle reflection paths also affects the addition of new

wedges to the agenda. Whenever a critical-angle reflection path to a vertex is

located, there is an opportunity to create "cutting-into" and "cutting-through"

paths. A reflection wedge can be created from such paths, as illustrated in Figure

118. Suppose that RREF is a path that travels right along side B I of a high-cost

region and includes the subpath S-P-P. A new path could enter the high-cost

region at the critical angle anywhere along side BI, between points P, and P.

Thus, we can create a new wedge defined on its left by RL and on its right by RR.

This wedge has P as a wedge tip. Path RL enters the high-cost region at the

critical angle through point P, similarly with path RR and point P2 . Recall that

the angle of incidence that a path makes with a region boundary during a

boundary-crossing episode is invariant with displacement of the intersection point.
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Thus, when RL and R5 form a partial well-behaved Snell's-law path pair (K-

WBSP) for K > 1, path RL runs parallel to path R,, through the first K

boundary-crossing episodes. Thus, there is no need for iterative search within

reflection wedges. Instead, we find the lateral displacement that causes either RL

or R to travel through the desired search point. The solution path will have this

displacement within the reflection wedge. Note that this analysis assumes that the

solution path (up to the search point), RL and R, all intersect the same sequence

of region boundaries. This behavior is guaranteed since refinement is based on a

Snell's-law path to the clomeet unsolved search point. If different region boundaries

could be intersected by the three Snell's-law paths, they may not be piecewise

parallel to each other.

Since a reflection wedge does not require an iterative search to find a point-

to-point solution path, these wedges must be somehow identified when added to

the agenda. We chose to maintain a separate agenda for reflection wedges, pro-

cessing this agenda after the regular agenda is emptied. The reason for this choice

is that reflection wedges can be numerous and delaying their processing should

result in a low upper bound on the cost of the optimal solution path, enhancing

pruning.

Recall that the algorithm requires the refinement (i.e., creation of sub-wedges)

of parent wedges based on a path to the global goal only if the goal is embedded

inside a high-cost region. This requirement is based on the existence of cutting-in

paths. Suppose that a goal path has been found within wedge W, as shown in

Figure 119(a). (In the Figure, the boxes around "Goal" and "B" do not mark

region boundaries; they only serve to keep the letters from being shaded.
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Similarly in Figure 120 with the letters "S" and "G".) Note that the wedge

right-side-defining path, RR, nearly reflects after intersecting side B of the high-

cost region. Continuing the wedge tip-to-goal path through side B of the region

results in a reflection path, Ru, which together with path RR forms a new sub-

wedge as shown in Figure 119(b). At some later time, this wedge may be removed

from the regular agenda to find the exact critical-angle reflection path to vertex

PI* At that time, a cut-in path segment from P2 , across side B to the goal can be

found. If the original goal path of Figure 119(a) had not been continued and used

to refine wedge W, this cut-in path would not have been noticed.

Reflection wedges can also be refined. The left and right sub-wedges, as usual,

have the same wedge tip as the parent wedge. Thus, these two sub-wedges are

also reflection wedges and should be either pruned or added to the reflection

S agenda. The middle sub-wedge, when it exists, has a new wedge tip and is not, in

general, a reflection wedge. These sub-wedges should be treated as regular wedges

that happen to include a reflection path as an approach path. Note that all the

wedge-pruning criteria previously developed also apply to reflection wedges.

We have described methods to ensure that cutting-in, cutting-out and

cutting-through paths are considered. Combinations of these paths are also possi-

ble. Figure 120 depicts a cutting-out cutting-in combination. The algorithm

solves this case by first creating those wedges associated with the embedded start,

S. One sub-wedge has the reflection path across boundary B as a left-side-defining

path. This wedge leads to the creation of the reflection wedge, between point PR

and P, cutting into the region across boundary B. This reflection wedge contains

S goal G, and a cutting-in path to G is found.
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L BLIND REGIONS AND LOCALITY ASPECTS

Chapter IV presented several other limitations, in addition to total internal

reflections, that can occur when applying Snell's law to the weighted-region prob-

lem. Those that have not yet been discussed center on the existence of blind

regions and the localized nature of the law. Both of these limitations are treated

by the algorithm without further extension.

Blind regions feature a diffraction vertex at their base. These vertices are sim-

ply treated as new starting locations that have a known approach path. The

wedge forming the blind region serves the same purpose as the initial wedge does

for the start location. Therefore, the algorithm can be recursively applied to

diffraction vertices. The localized nature of Snell's law cannot be explicitly over-

come. We rely on good pruning heuristics to avoid "looking everywhere" and thus

ensure some degree of efficiency.

J. REDEFINING THE ALGORITHM

We have discussed enhanced capabilities for the al,;orithm since its initial

presentation in the introduction to this chapter. In Figure 121, we provide a

more detailed view of the control flow for the algorithm that includes provisions

for the concepts discussed in preceding sections. Notably, ability to work with

total internal reflections is added.

The initialization procedures required are the same as presented in Figure 88.

There is new decision box required to refine a wedge based on a path to the global

goal when the goal is embedded in a high-cost region. Such refinement allows
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"cutting-in" paths to the goal to be computed. The diagram in Figure 121 also

shows an entirely new branch of operations to be completed when the regular

agenda is exhausted. This branch of control processes reflection wedges. Note that

the algorithm prefers to process regular wedges rather than reflection wedges. This

is an effort to achieve the lowest possible upper bound on the cost of a solution

path so that the maximum number of reflection wedges can be pruned without

search. In general, a large number of reflection wedges are created and many of

them can "double-back" on themselves. We hope to eliminate such wedges by

pruning based on a low upper bound. Also, the new algorithm control-flow

scheme requires that both the regular agenda and the reflection agenda are empty

or have only elements whose cost evaluations exceed the upper bound on the cost

of the optimal solution path before processing is terminated.

K. DEMONSTRATION

In this section, we present a demonstration of the algorithm as described in

Figure 121. The demonstration problem is not complicated, involving only 2

high-cost regions and no obstacle areas. The cost-rate ratio is 2:1 between high-

and low-cost regions. In Figure 122, S denotes the start location, G the goal loca-

tion and the shaded triangles represent high-cost regions. The bounding box is

displayed as the heavy-lined rectangle that intersects the bottom high-cost region.

The intersections of the high-cost regions and the bounding box required the crea-

tion of (artificial) boundary points z7 and z9. (All path intersections with the

bounding box are denoted zX where X is a number.)
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Figure 123 details the search tree for the problem. This is a tree of wedges. At

each node, the Snell's-law path defining the wedge left side is listed above the

path defining the wedge right side. The descendants (sub-wedges) of each node

(parent wedge) are listed from left to right as the left, middle, and right sub-

wedge. The circled number above each node indicates the order in which the node

was removed from the agenda for refinement. If a node has no number above it, it

was either never added to the agenda or it remained on the agenda at solution.

Some nodes also include their numerical rating in the form f(n)=g(n)+h(n) (the

total cost evaluation is equal to any known cost added to a lower-bound cost

evaluation). The approach path constitutes a known cost. In the figure, the

abbreviation "u.b." denotes upper bound.

The search begins with two initial wedges, created by ray-tracing Snell's-law

paths that have initial headings perpendicular to the S-to-G line segment. The

right such path proceeds from S with no boundary-crossing episodes until the

bounding box is intersected at point z8. The left initial path reflects at point d, its

first boundary-crossing episode. Note that this path is not a critical-angle

reflection path, although it is treated as such for the time being. Tracing of this

pith is terminated at point c. Early ray tracing termination is possible here

because if a wedge associated with the S-d-c path is not empty, a critical-angle

reflection path to point c will be found. Ray tracing will be completed at that

time.

The first wedge examined is the upper initial wedge. Here, point k is chosen as

the closest unsolved search point (although point c or z7 could also have been

selected). The algorithm locates two reflection paths from S to k, S-j-k and S-m-k.
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The S-j-k path has lower cost, so it is used in the left and middle sub-wedges

while the S-m-k path must be used for the right sub-wedge. Next, the algorithm

considers the lower initial wedge that is defined by S-z8 on its left and S-d-c on its

right. Point c is selected as the closest unsolved search point. Note that no right

side sub-wedge is created during refinement of the lower initial wedge. There is no

need for this sub-wedge since the left side sub-wedge includes all the interesting

space within the parent wedge. The middle wedge has a critical-angle reflection

path to point c as an approach path. This middle sub-wedge remains on the

agenda at solution and is never further refined.

Processing continues in a similar manner until the eighth wedge is refined.

This wedge yields a refraction path to G that features two boundary-crossing

episodes. This path has a cost slightly lower than the cost of the straight-line path

used as the initial feasible solution path and thus causes replacement of the upper

bound on the cost of the optimal solution path. The next wedge refined also pro-

duces a solution path. This is a critical-angle reflection path to G that quickly

exits the first high-cost region at point f, travels along the region boundary

between points IL and p, and then cuts-into the second high-cost region at point o

to reach the goal. This path, S-f-n-o-G turns out to be the optimal-cost solution

path.

After the tenth wedge is examined, the regular-wedge agenda is exhausted, all

of its elements having cost greater than the cost of the S-f-n-o-G path. All ele-

ments on the reflection-wedge agenda also exceed the upper bound so processing

terminates. Note that the wedges having approach paths S-i-q and S-b-c were

never examined evcn though both contain cutting-in paths to the goal. (The
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former has a cut-in path from the boundary between points q and p while the

latter contains the path S-b-c-n-o-G.) Both wedges were pruned due to the

upper-bound cost established after refinement of the ninth wedge.

L. COMPARISON WITH THE CONTINUOUS DIJKSTRA ALGORITHM

Both the Continuous Dijkstra Algorithm (CDA, discussed in Section II.F.5)

and the algorithm developed in this chapter rely on using a homogeneous-cost

region problem representation and applying Snell's law as a local optimality cri-

teria to solve specific instances of the weighted-region problem. Thus, both algo-

rithms rely on the same general precepts. However, there are many differences in

the two algorithms.

A primary objective in developing the CDA was to establish polynomial

bounds for the time and space complexity of the algorithm [Ref. 42]. Many of the

control flow decisions made during algorithm design were based on achieving this

objective. Our Snell's-law-based algorithm is intended to support low average-case

time and space requirements and the algorithm has been designed accordingly.

Thus, the two algorithms are based on different design goals and these design

goals affect the control-flow scheme for both algorithms.

The CDA uses Dijkstra's algorithm (uniform-cost search) which is an unin-

formed strategy. In this chapter, we have developed many criteria that can be

used to prune nodes (i.e., wedges) in the search tree that we create. We have also

developed methods to achieve lower-bound cost evaluations for each node in the

search tree. These two developments lead to the use of the A* algorithm, an

informed strategy which offers improved average-case performance over
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uninformed strategies when reliable lower-bound evaluation functions are avail-

able. Thus, our Snell's-law-based algorithm focuses, to a much greater degree, on

keeping the search tree small in order to minimize search effort.

The CDA uses uniform-cost search to find wedges (all of which begin at the

start) that define disjoint intervals of optimality for each homogeneous-cost region

boundary on the area-cost map. There is a single wedge associated with each

such interval so that the optimal-cost path from the start to the portion of the

region boundary (i.e., the interval) must be within only that wedge. The collec-

tion of intervals of optimality amounts to an exhaustive graph. Thus, a specific

start-to-goal path planning problem can be resolved by locating the single interval

of optimality that contains the goal. In some sense, the CDA uses the start (loca-

tion) in a pre-processing step to create an exhaustive graph that simplifies finding

a specific start-to-goal optimal-cost path. In contrast, our Snell's-law-based algo- T

rithm focuses on finding the optimal-cost start-to-goal path immediately and only

creates a graph (a tree) structure large enough to find that path. That is, only the

minimum number of optimal-cost paths are found during execution of the algo-

rithm. Again, this choice is influenced by our goal of achieving low-cost average-

case performance.

There are other differences between the two algorithms. The CDA must tri-

angularize the homogeneous-cost regions, resulting in the creation of artificial

region boundaries (and this increased number of boundaries affects the time and

space complexity of the CDA). Our Snell's-law-based algorithm does not require

triangularization; it can reason directly about homogeneous-cost regions having

arbitrary geometry. No artificial boundaries are created. The CDA only solves
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problems for starts and goals that are located on region boundaries. Our Snell's-

,law-based algorithm can find the least-cost path between any two points that are

not inside obstacle regions. Thus, if an optimal-cost path on the area-cost map

exists, our Snelrs-law-based algorithm can find that path. The CDA has polyno-

mial time and space bounds. The worst-case bounds for our Snell's-law-based

algorithm are much higher (see Section VLB), although the average-case perfor-

mance of the algorithm seems to be a quadratic function of the number of region

vertices inside the bounding box (as developed in Chapter VII). Thus, the two

algorithms rely on common precepts but have fundamentally different capabilities

and operational characteristics.

M. SUMMARY

Snell's law can be used as the basis for a weighted-region problem solution

* technique. The solution path in Figure 122 shows that the method is not affected

by problems of digital bias. Paths are described by a set of turn points. The

difficulties associated with the law, notably those involving total internal

reflections, are not insurmountable. The algorithm is able to make use of

critical-angle reflection paths as well as normal refraction paths. Various pruning

heuristics are necessary to overcome the localized nature of Snell's law and thus

provide for some degree of efficiency. The average-case time and space perfor-

mance of the algorithm is the subject of the next chapter. In the introduction, we

cited the ability of this algorithm to provide improved average-case time and

space performance when compared to competing techniques. We exemplify this

claim in Chapter VI which presents a direct comparison between the Snell's-law-

based method and the wavefront-propagation technique.
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VI. PERFORMANCE COMPARISON

A. INTRODUCTION

We have implemented a version of the Snell's-law-based A* search algorithm

developed in Chapter V in the C-Prolog language. A wavefront-propagation

algorithm, (unidirectional ellipse-based) as described in Chapter III has also been

implemented in the same language. We have used both algorithms to solve the

same set of weighted-region problems in order to compare the performance of the

techniques. Our effort is directed towards obtaining a notion of the average-case

performance of the two methods, without regard to their worst-case complexities.

It is difficult to prove that a single instance of a weighted-region problem has

average complexity. Because of this, we have presented a variety of problems to

both techniques for solution.

Selecting a measure for performance comparison of the two algorithms is

difficult because they have different fundamental operations. The basic operation

for the wavefront-propagation algorithm is node expansion. The Snell's-law-based

algorithm has no notion of lattice nodes; the algorithm uses line intersections

extensively. Also, the wavefront algorithm has no concept of homogeneous-cost

regions and is affected by the distance between the start and goal coordinates.

The number of homogeneous-cost regions inside the bounding box (and thus the

number of region vertices) is very important to the Snell's-law-based algorithm

while the start-to-goal distance is immaterial. Due to the very fundamental
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differences between the algorithms, we base our comparison on the execution

, times required by the algorithms to reach a solution path and on the storage

space required to describe a specific weighted-region problem to each algorithm.

(We note that comparison could be based on other measures, such as the number

of cpu load instructions. However, time is a well-understood concept that is also

easily measured.)

Timings are achieved by the use of the built-in C-Prolog predicate "cputime"

which returns the time used by the central processing unit (cpu). Both algorithms

make use of the same initial solution path to limit the physical portion of the map

that is searched. Because of this, the time required to achieve an initial solution

path and the time required to construct a problem description is not counted in

the timings for either method. We measure space requirements in terms of the

amount of storage required to describe the problem after the initial bounding

solution path has been found. (Prior to finding the initial solution path, the

storage requirement is constant; the space to describe the entire map is needed.)

In the next section, we discuss theoretical issues relating to the Snell's-law-

based algorithm. In the following sections, we provide more detailed information

on the Prolog implementations of the two algorithms. Section VI.C describes the

ternary-cost maps used for posing test problems as well as the manner in which

test problems were selected. Performance-comparison data is presented in Section

VI.D. Section VI.E briefly summarizes some results, although principal

conclusions are presented in Chapter VII.
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B. THEORETICAL MEASURES

As the Snell's-law-based algorithm is intended to have low time and space

requirements in the average case, it is difficult to construct a meaningful worst-

case problem for the algorithm. By meaningful, we indicate a problem somehow

"bad enough" so that its solution requires the greatest possible time and space

while, at the same time, not being "so bad" that the problem could never occur.

We have not succeeded in finding such a worst-case problem and are thus forced

to rely on a worst-case analysis that grossly overestimates the worst possible

performance of the algorithm. The main difficulty in constructing a meaningful

worst-case problem stems from the fact that the wedges we create may overlap

each other. Because of this, the total number of wedges that can be created

during the execution of the algorithm is difficult to tightly bound.

Before analyzing the worst-case performance, we show that the Snell's-law-

based algorithm always halts. One of the first steps in the algorithm is to find an

initial feasible solution path and then calculate the cost of this path. This cost is

used as an upper bound on the cost of the optimal-cost solution path. Any wedge

that has a lower-bound evaluation greater than this upper bound can be pruned

from the search tree.

A main goal of the algorithm is to constantly extend (by refinement into sub-

wedges) the portions of wedges that are explored. Basing wedge refinement on the

Snell's-law path to the closest unsolved search point within the wedge guarantees

this behavior. A portion of the total lower-bound evaluation for each wedge

comes from the minimum cost of any path through the K-explored portion of that

wedge. As the length of the explored portion of each wedge must increase, so must
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a portion of the lower-bound evaluation for each wedge increase. Thus, continual

refinement of wedges must eventually lead to one of two possibilities. Either a

start-to-goal solution path is found within a wedge and further refinement of the

wedge stops, or the lower-bound evaluation for the wedge exceeds the upper

bound on the cost of an optimal-cost solution path and further refinement of that

wedge stops. Therefore, no wedge is subjected to infinite refinement; thus the

algorithm only creates a finite number of wedges and the algorithm is guaranteed

to halt.

In order to establish a worst-case time complexity for the algorithm, we must

determine the maximum time that it could run before halting. Our Snell's-law-

based algorithm creates a search tree where nodes in the tree correspond to

wedges in the search space. Each node has a maximum branching factor of four

8since at most four sub-wedges can be created from the refinement of a single

wedge. To see this, first consider the refinement of a regular (i.e., non-reflection)

wedge. If refinement is based on a Snell's-law path to an obstacle region vertex,

either two or three sub-wedges can be created (as described in Section V.F and

Figures 109 and 110). When a Snell's-law path to a high-cost region vertex is the

basis of refinement, the possibility for creating four sub-wedges exists. The first

three sub-wedges are the left, middle and right sub-wedges that can be added to

the regular-wedge agenda (as in Section V.F). In some cases, a single reflection

wedge can also be created. This can occur when the wedge tip of the parent

wedge (i.e., the wedge being refined) is a homogeneous-cost region vertex and the

approach path to the middle sub-wedge (or child wedge) goes through another

homogeneous-cost region vertex that is on the same region boundary as the wedge
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tip. In this case, a reflection wedge can be created based on the approach path

(as described in Section V.H). Thus, each regular wedge can be refined into at

most four sub-wedges.

The refinement of reflection wedges is similar. Recall that reflection wedges

only exist in relation to boundaries of high-cost regions, thus obstacle regions are

not involved. Here, only three sub-wedges can be created for each wedge refined.

The left and right sub-wedge will also be reflection wedges. The middle sub-wedge

is a regular wedge that includes a critical-angle reflection at one of the boundary-

crowing episodes on its approach path. Clearly, the middle sub-wedge cannot lead

to the creation of a reflection sub-wedge. Thus, nodes in the search tree that

correspond to reflection wedges have a maximum branching factor of three.

Note that the refinement of any wedge is based on the Snell's-law path to the

closest unsolved search point within that wedge. Further, the closest unsolved

search point will be on a wedge-defining Snell's-law path for each of the sub-

wedges created during refinement. Recall that when determining the closest

unsolved search point within a wedge, those search points already on wedge-

defining Snell's-law paths are not considered as eligible candidates.

The total number of search points is at most the number of region vertices

plus the goal. Denote this number SP. Thus, each of the two initial wedges (as in

Figure 90, Section V.B) cannot contain more than SP search points. (Clearly this

is an overestimate since the two initial wedges do not overlap. The sum of the

number of search points contained in each of these wedges is equal to SP.) When

a wedge contains N search points, each of its sub-wedges can contain, at most.

0
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N - 1 search points. (Again, this is an overestimate since the subwedges do not

, entirely overlap each other.)

If the initial wedge contains SP search points, in the worst case, that wedge

can be refined at most SP times, one refinement based on each search point

within the wedge. Due to the upper limit on branching factor, each single

refinement can create at most four sub-wedges. As above, each of the sub-wedges

created by refinement can contain, at most, SP - 1 search points. Thus, each

sub-wedge created from the initial wedge can be refined at most SP - 1 times.

This process can continue until all SP search points are included on the wedge-

defining Snell's-law path for every wedge. (Since wedges overlap, the same search

point can appear in many different wedges.) There are two initial wedges, so the

entire process can be done twice. Thus, 2x4xSP! wedges can be created in total.

* Based on this greatest possible number of wedges in the search tree, the algorithm

has an exponential worst-case time complexity O(SP!). Since each wedge created

must also be stored, the algorithm also has an exponential space-complexity

bound.

We have already noted two ways in which the above analysis for worst-case

performance is overly conservative. Also note that the analysis does not consider

the pruning of wedges. Further, consider the leaf nodes in a search tree where

each wedge has all SP search points on both of the Snell's-law paths that define

the wedge. If both of the wedge-defining Snell's-law paths are identical, the wedge

would have been pruned after the first refinement. If the wedge-defining paths are

not identical then they must intersect in many places (one intersection for each

search point on each path). Such intersections terminate wedges which makes
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further refinement of the wedge impossible. Thus, it should be clear that the

exponential time and space bounds are not tight. In Chapter VII, testing results

indicate the algorithm's average-case performance is on the order of a quadratic.

Specifically, the testing reported in Chapter VH indicates that the average-case

performance of the algorithm is on the order of N2 when there are N search points

within the bounding box.

In terms of performance bounds, our Snell's-law-based algorithm seems similar

to the well-known simplex algorithm that is widely used in operations research. It

has been shown that the simplex algorithm can require an exponential number of

steps in the worst case [Ref. 501. However, its average-case performance is such

that it is the most often used algorithm for solving linear programming problems,

even though polynomial-time algorithms for the linear programming problem

exist [Ref. 51]. The testing results reported in Chapter VII show that our Snell's-

law-based algorithm performs well in the average case, despite its exponential

worst-case time and space bounds.

A second theoretical measure of our Snell's-law-based algorithm concerns the

maximum-cost error in its solution paths. If the problem representation (i.e., the

area-cost map) is a perfect representation of the real-world environment and there

is no numerical error in the computations, then, based on the derivation of Snell's

law in Section IV.C. the solution paths returned by the algorithm have no cost

error. However, the problem representation will not, in general, be perfect. If

there are large errors in the representation then the cost errors in solution paths

will also be large. Our Snell's-law-based algorithm cannot return solution paths

that are more accurate than allowed by the problem representation. As an
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example, if a region vertex is "misplaced" in the area-cost map, the solution path

provided by our Snell's-law-based algorithm will rely on the misplaced location for

that vertex. Even when the locations of region boundaries on the area-cost map

are guaranteed to be within some range e of the actual locations of the

corresponding real-world region boundaries, we cannot, in general, bound the

error of the Snell's-law solution paths. As an example, if two obstacle boundaries

are within e of each other on the area-cost map, they may actually touch in the

physical environment. Thus, if the Snell's-law-based algorithm plans a path

(based on the area-cost map) between the obstacles, it will not be a feasible path

in the real world. We also cannot guarantee that this path could be locally

adjusted to become feasible. It could be that the real-world optimal solution path

is totally different from the solution path provided by the algorithm.

In some special cases, where multiple region boundaries do not affect the

path-cost error, we can bound the cost error of solution paths due to incorrect

modeling of region boundary locations. Suppose that each homogeneous-cost

region boundary represented on the area-cost map is guaranteed to be within ±c

of the location of the corresponding real-world boundary. Such an instance might

occur when a jagged-edged real-world boundary is modeled by a single line

segment of a homogeneous-cost region. If all the "vertices" of the real-world

boundary are within 2 of each other, then the resolution of the area-cost map

might allow them to be modeled by a single line segment, as illustrated in Figure

124(a). In such a special case, we can bound the cost error of Snell's-law solution

paths.

309



area-cost map model of region boundary

N A , \/

Real-world region boundary

(a). Real-World and Model Region Boundaries

high-cost region Gcost rate CH  8i+1 .

P2 Pi
low-cost region area-cost map
cost rate CL  model of region boundary

(b). Error Analysis Illustration

Figure 124. Path-Cost Error Due to Misplaced Boundaries
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In Figure 124(b), we have illustrated two path segments joined at a single

A I boundary-crossing episode that occurs at a region boundary guaranteed to model

the location of a real-world boundary within ±c. Let the cost rate on one side of

the region boundary be C,, and on the other side be CL and assume that C, is

more expensive than CL. Suppose that the location of the real-world boundary

actually corresponds to the lower dashed line in Figure 124(b). Then, the cost of

the S-P path segment has a higher real-world cost than the cost of the Snell's-law

solution. In general, the cost difference is:

(C, - CL) £ sec(,)

However, the S-P path segment could have been planned to travel right along the

region boundary. In this case, we assume that the path would be executed by

traveling along the real-world region boundary and then taking a sharp turn into

8the high-cost region. Such a path would be S-P2-P1-P-G in Figure 124(b). In this

case, the difference in path cost is:

CL e tan(ei) + C0 c - CL c sec(fi)

In some cases, it could occur that the above quantity is greater than the difference

in cost rates multiplied by the distance along the P2-Pi path segment. Since we

assume that least-costly real-world variation of the planned path would be

executed, we also need to consider

(CH - CL) Li

where Li is the length of the P2-P1 path segment. Let the calculated cost of the

S-P (planned) path segment be Cp. When the location of the real-world high-

cost region boundary corresponds to the lower dashed line in Figure 124(b), we
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can bound the error in computed path cost by adding the minimum of the three

terms above. Thus, real-world path error along S-P is bounded above by:

Cp + mini(CH - CL)L, (CH - CL) sec(O,),

CL c tan(f,) + CH c- CL c sec(O,)]

In cases where the location of the real-world boundary corresponds to the

upper dashed line of Figure 124(b), the cost of the real-world path is lower than

the cost of the computed (Snell's-law) path. In this case, we assume that the path

would be executed as planned. Thus, the actual path cost is lower than the

computed path cost along path segment P-G of Figure 124(b). The cost difference

is:

(CH - CL) c sec(Oi,)

so that, when Cp is the cost of the P-G segment, the real-world path cost is

bounded by:

CP - (CH - CL) e sec(#,+,)

Therefore, in special cases where multiple region boundaries do not affect

real-world path cost (as described in connection with the obstacle example above),

the error involves high-cost region boundaries, and the location of the real-world

cost-region boundary is guaranteed to be within ±c of their modeled locations, we

can establish upper and lower bounds on path-cost error. The total path-cost

error is achieved by summing the (local) cost error of each path segment. Note

that the angles of incidence and refraction at each boundary-crossing episode are

required to compute these errors. Also, the same analysis can be applied to

"reversed" situations such as considering the path in Figure 124(b) to be a G-to-

P-to-S path.
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Numerical computation errors can also affect solution path cost. The

S algorithm relies on trigonometric functions to complete ray tracing requirements.

The numerical routines that compute the trigonometric functions are subject to

numerical error. This being the case, we now analyze the amount of cost error in

solution paths based on numerical-computation error. Our analysis rests on

possible error in computing angular measures, such as angles of incidence, that are

used to determine path headings.

In Figure 125, suppose that c is the amount of error in angular measure. If no

error were present, a Snell's-law path from S to P1 (on boundary B) would be

computed. However, error causes that path to be computed as going from S to P2

on boundary B. We are concerned with the path-cost error that can result from

such computation error. In our analysis, we assume that the S-to-P1 path

segment is in the same homogeneous-cost region as the S-to-P2 path segment.

Thus, the same cost rate can be associated with both path segments. In this case,

when we express the length of the error-influenced path segment (h2 for the S-to-

P2 path in Figure 125) in terms of the length of the actual (non-error-influenced,

as denoted by hi for the S-to-P1 path segment of Figure 125) path segment we

are also expressing the cost of the error-influenced path segment in terms of the

cost of the non-error-influenced path segment.

In Figure 125, note that

6 =0
82 +

8= 90 - o90 - (theta1 +).

a 90-

By the law of sines
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normals to boundary B

boundary 
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S

Figure 125. Path Cost Error Illustration
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sin(# )  sin(a)

hl h2

sin(90 - (01 + )) sin(90 + 01)

hl h2

sin(81 + 90) = cos(91 )

sin(90 - (+ )) cos( 1 + C)

cos(0 1 + e) cos(9 1 )

hi h2

h2cos(f1 + ) = hlcos( 1)

cos(O1)
h2 = hl

cos(e + C)

Now suppose that we can limit the error in angular measure to a maximum of

one degree. Then, since c=

cosl91)

h2 = hl (2)
cos(O1 + 1)

Allowing 9 to range between 0 and 88 degrees, the maximum value of the

ratio expressed in equation (2) above is 1.71 and the mean value of the ratio is

1.04 (note that when 0 = 89 and (0 + 1) = 90 the ratio is undefined).

This analysis is based on the cost error of a single path segment. However,

the same analysis holds (per maximum error) for each path segment in a reported

solution path. Thus, each error-influenced path segment could, on the average,

have a path segment cost error 1.04 times greater than the cost of the

corresponding non-error-influenced path segment, assuming that region boundary

headings are randomly distributed. Therefore, when the maximum angular error

is limited to one degree, the solution paths reported can have, on the average, a
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path cost 1.04 times greater than the cost of the true non-error-influenced solution

path. Thus, while the Snell's-law-based algorithm does provide an accurate cost

for its solution paths, due to numerical error, these paths may not be the exact

minimal-cost solution since they may not obey Snell's law exactly at every

boundary-crossing episode.

C. PROLOG IMPLEMENTATIONS

Both the Snell's-law-based algorithm and the wavefront-propagation

algorithm are implemented in an interpreted version of C-Prolog that runs under

Berkeley UNIX System 4.2. The algorithms were executed on a multi-user

Integrated Solutions Optimum V Workstation that has 2MB of main memory and

a single 68020 central processor (these machines are similar to the more widely

known Sun workstations). The Prolog "cputime" predicate returns the cpu time

for a single user;, thus the number of users on the machine should not affect

timing results. However, only a single user was directly logged onto the machine

during test runs.

1. Wavefront Propagation Implementation

The Prolog implementation of the wavefront-propagation algorithm uses

many of the ideas developed in Chapter III. Bidirectional search featuring three-

way neighbor checking is used. The start- and goal-centered wavefronts are

propagated inside the bounding box instead of an ellipse. The slightly larger figure

is used so that both the wavefront algorithm and the Snell's-law-based algorithm

search the same physical area. The Prolog wavefront implementation does not use

a heuristic to selectively expand the wavefronts; the start- and goal-centered
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wavefronts are uniformly expanded. Thus, with the exception of limiting the

physical search space by the bounding box instead of an ellipse, the implemented

wavefront algorithm is exactly the Ellipse algorithm of Chapter III (and Tables

10, 11 and 12).

The two-dimensional array is an important data structure for the

wavefront-propagation algorithm. Array indices correspond to ternary-cost map

coordinates for each node, either directly or by a constant translation. As

described in Chapter III, the calculation of neighbor coordinates also allows the

random access to the array storing the cost rates for those neighbor nodes. Our

version of Prolog does not support the array as a data structure. Instead, lists are

available. Lists do not support random access and sequentially searching through

a list to find the cost rate for a neighbor cell can be time consuming. We wish to

~ minimize the effect of the lack of the array data structure on the execution time of

the wavefront-propagation program. While C-Prolog does not allow random

access of lists, it does support direct access to different predicates through a hash

table of predicate names. We have used the Prolog "univ" (=..) [Ref. 52,531

operator to construct predicate names that include node X coordinates. As an

example, suppose that the lattice node at X coordinate 10 and Y coordinate 20

has a cost rate of 2. For a predicate named "c" (short for cell value) a fact might

be "c(10,20,2)". Our scheme instead creates the fact "clO(20.2)", allowing the

interpreter to hash into the predicate table based on a node's X coordinate. This

scheme markedly reduces execution time of the wavefront program. While the

organization is not as ideal as an array, it serves to assure the validity of test

results. (We note that the Snell's-law-based implementation is also handicapped
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by the lack of arrays although this data structure is not as central to the Snell's-

law-based algorithm as it is to the wavefront-propagation algorithm.)

There are also several ways in which the lattice-based problem

representation could be created. That is, we need a method of assigning cost rates

to the lattice nodes, based on the information in the ternary-cost map. There are

some difficult questions that must be resolved if the lattice is to accurately reflect

the cost-rate information of the ternary-cost map. Since each lattice node

represents an area on the cost map, two simple schemes of assigning lattice node

cost rates are readily apparent. The average cost rate over the area represented

by the node could be assigned or the cost map could be sampled at exactly the

map coordinates of the lattice node to obtain a single cost rate. Neither method

is perfect. As an example, if the area represented by the node includes some

portion of an obstacle area, how does one average in the "infinite" obstacle area

cost rate? Similarly, when using a point sampling technique, some important

areas of the map might be overlooked. Sampling the area-cost map at exactly the

coordinates of the lattice node may "skip over" some important area of the map.

Two lattice nodes can be separated on the cost map by a thin obstacle (a fence

line for example). Sampling the area-cost map at the coordinates of each node

will not capture this situation and can result in an infeasible path (i.e., a path

that goes through the fence line) being returned as a solution path.

More powerful techniques could also be used. For instance, a rule-based

system might be employed to assign aggregate costs, based on a neighborhood

around the node. However. we are not interested, in this work, in improving the

wavefront problem representation. The homogeneous-cost region representation
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seems more appropriate to the problem than any improved version of the lattice-

based representation. Thus, we have chosen the simplest lattice-building scheme,

that of directly sampling the cost map at the coordinates of the lattice node.

2. Snell's-Law-Based AlgoriA.hm Implementation

There are several Prolog implementations of the Snell's-law-based

algorithm that differ only in their lower-bound evaluation functions. The first

implementation makes use of cached information about path costs between pairs

of region vertices. The cached knowledge is used when developing the initial

solution path to construct the bounding box as well as during execution to

calculate lower-bound cost evaluations. We denote this version of the algorithm as

SL-Dynamic since it uses stored information dynamically, many times during

execution. A second version, SL-Static, uses cached knowledge only once, when

obtaining an initial solution path. The final version, SL-None, does not use cached

knowledge. It obtains an initial solution path by treating the problem as binary

and finding the shortest-distance solution path. The cost of this solution path is

then calculated on the ternary-cost map.

Other than the different uses of cached information, the implemented

Snell's-law-based algorithms are identical and utilize most of the ideas developed

in Chapters IV and V. They all rely on a control-flow scheme as depicted in

Figure 121. There are some concepts that have been discussed, but not

implemented. First, the program does not include a provision to index the search

points by their position (as in Section V.D). Each time a portion of a wedge is

examined to determine the search points it contains, each search point within the

S bounding box is considered as a possible candidate for containment. Secondly,
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precomputed stored optimal-cost paths are not used to physically limit the search

space (as in Section IV.I, Figure 81 and Figure 82). We have not addressed the

question of how to determine which pair of stored paths best limits the physical

space to be searched. As a result, only the bounding box is used to define the

area that must contain the optimal-cost solution path. A third unimplemented

feature is described in Section V.D. We have not marked portions of wedges

which are known not to contain search points (based on the examination of a

corresponding wedge portion in a parent wedge). Thus, the Snell's-law-based

algorithm must examine the wedge from the wedge tip outward to determine the

closest unsolved search point in that wedge. Finally, the implementations do not

contain facilities to dynamically alter the size of the bounding box once an initial

solution path has been determined (as in Section IV.I). These implementation

omissions serve to slow the execution of the Snell's-law-based program but do not

invalidate test results.

Recall that the algorithm is designed to solve problems given a ternary-

cost map and that this is not a severe limitation (see Section V.A). The

implementation only solves problems where each high-cost region and each

obstacle region are assumed to be surrounded by optimal-cost area. Again, this is

not a severe limitation. It is simply a feature that has not been implemented in

the prototype algorithm.

3. Implementation Dependent Characteristics

The version of Prolog that we have used is interpreted; we do not have

compiled code for testing. Prolog was chosen for the task because it is a good

language for prototyping. However, the execution times reported in this chapter
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are dramatically different from those cited in Chapter III for the wavefront-

propagation algorithms executed in compiled C code. In fact, the mean node-

expansion time for the Prolog wavefront-propagation program is over 100 times

greater than the mean node-expansion time of the C implementation. While the

difference is large, its impact on our comparative analysis is negligible. Both the

wavefront program and the Snell's-law-based programs are written in the same

language, use the same interpreter, and execute on the same machine. Thus, the

timing results are suitable for comparative purposes.

A second consideration involves numerical issues. The Snell's-law-based

program is intensive numerically, using several trigonometric functions and

relying heavily on line-intersection routines. C-Prolog is not very suitable for

programs that have such requirements. The language only supports single

e precision operations and its trigonometric operators are not entirely accurate.

These language-dependent anomalies have necessitated the inclusion of additional

predicates to ensure proper operation of the algorithm as the boundary values of

numerical routines are approached (arcsine(1.0) as an example). Again, this tends

to slow the operation of the Snell's-law-based algorithm.

A final consideration relates to the use of execution time as a comparative

performance measure. Some portion of each algorithm's execution time is

attributable to the interpreter itself and this time cannot be identified separately.

In particular, the Snell's-law-based algorithm makes widespread use of recursion

and Prolog's backtracking facility. The wavefront program also relies on

backtracking, although to a lesser degree. Backtracking can have a high overhead

and the form most often used by the Snell's-law-based program can be more
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efficiently coded with a standard "if... then.., else if... " construct, a facility not

available in C-Prolog. Both algorithms also use unifiability [Ref. 52,53] as an "if"

construct to affect predicate selection and, again, it is difficult to determine the

effect this has on timing marks.

In summary, both algorithms can be more efficiently coded in other

languages. Prolog has been chosen because it is very supportive of prototyping

requirements; code is produced easily and quickly. We have taken steps to lessen

the impact of Prolog's shortcomings for both algorithms. However, one should be

aware of the Prolog characteristics that make the language somewhat ill-suited to

the implementations of the path-planning algorithms. Still, both algorithms

execute on the same hardware/software system and thus the timing marks are

indicative of their relative performance.

D. SELECTING TEST PROBLEMS

Two ternary-cost maps are used in the testing process. The first map, Mapi, is

entirely artificial and was designed to exhibit a variety of homogeneous-cost

region geometry. A large amount of stored path cost information has been

accumulated for this map. (Thus, problems solved by the SL-Dynamic and SL-

Static algorithms come from Map1.) Specifically, we have stored information that

can be used to directly construct the optimal-cost path between any two region

vertices on the map when a 2:1 cost ratio exists between the high- and low-cost

traversable areas. Recall (Section IV.H) that entire paths between region vertices

need not be stored for this purpose. Only those links that do not include region

vertices as intermediate turn points are required. Using this scheme, 301
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bidirectional links are required to represent the optimal-cost paths between the 44

*region vertices of Mapi; a map that has 4 obstacle and 4 high-cost regions. Figure

126 depicts Mapi as well as reference grid where reference lines appear eight units

apart. (The units are generic; they are the map coordinate units.) The reference

lines are not the lattice used by wavefront propagation. The reference grid is

simply included so that some of the test problem start and goal coordinates can

be positioned in Figure 126, if desired. The lower left comer of the grid has

coordinates (0,0). In the figure, the dark polygons represent obstacle areas, the

light polygons depict high-cost traversable regions, and the unshaded background

area is the low-cost traversable area.

The second ternary-cost map, Map2, represents a portion of the Point Lobos

ternary-cost map introduced in Chapter I. Only a portion of the Chapter III

ternary-cost map is used since we wish to limit the size of the problem

representation for both maps without losing detail. Also, to make Map2 more

interesting, some obstacle areas from the Chapter III version have been moved

slightly so that they are included on the ternary-cost map. Map2 has 85 region

vertices to describe its two obstacle areas and its 4 high-cost areas. Figure 127

shows a reference grid superimposed onto Map2. Again, there are eight units

between reference lines, the lower left corner of the map is located at the origin of

the coordinate system and the same shading of regions is used.

Both ternary-cost maps represent an area limited by 128 square units. The

Snell's-law-based algorithm is able to use rational-numbered values for path turn

points and for the coordinates of region vertices. To maintain consistency with the

wavefront program, only integer values have been used as region vertex
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1 Figure 126. The Mapl Area-Cost Map

coordinates. (Thus, the Pt. Lobos map used here is a "rounded" version of that

used in Chapter III.) Also, this wavefront implementation does not rely on the

screen pixel (as in Chapter III) as the highest unit of resolution. Rather, an

independent unit is used so that each ternary-cost map can be entirely

represented by a 128 by 128 node lattice. When this number of lattice nodes is

used to represent the ternary-cost map, we refer to the resolution as 1:1. The

wavefront program can be executed at different resolutions that are integer

multiples of the basic 1:1 resolution. When the resolution is lowered by a factor of
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wavefront algorithms solving identical problems at different resolutions.

The different algorithms have been executed on a variety of test problems.

Some of the problems have been chosen to illustrate particular algorithm

behavior. As an example, a problem that features a bounding box having a small

area is favorable to the wavefront algorithm (in terms of the time required to
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solve the problem). Note that the area of the bounding box approximately

corresponds to the number of nodes in the lattice at a 1:1 resolution. Thus, when

the lattice is small, the low overhead of the wavefront technique should allow th,.t

algorithm to quickly solve the problem. Similarly, a problem featuring a large

bounding box that includes only a few search points should be favorable to the

Snell's-law-based algorithm since this technique is insensitive to the bounding-box

area but is sensitive to the number of region vertices that must be considered. The

start and goal locations for some problems have also been chosen at random.

For each wavefront problem, we have recorded the area of the bounding box,

the number of lattice nodes expanded and the time required to solve the problem.

The area of the bounding box is on the order of the storage space required to

represent the problem to the wavefrorit algorithm. The Snell's-law-based

technique has been used to solve an identical set of problems. For it, we have -.

recorded the number of search points in the bounding box, the number of wedges

made, the number of wedges searched, the number of line intersections calculated,

and the time required to solve the problem. The number of search points is on the

order of the storage requirement to represent the problem. The number of

intersections required during the algorithm's execution provides a general

characterization of the time requirement of the Snell's-law-based algorithm, much

as the number of nodes expanded describes the wavefront technique. That is.

knowing the time required to find the intersection of two lines on another machine

in another language can be used to make a reasonable prediction of the Snell's-

law-based algorithm's time requirements on that machine in that language.
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E. COMPARATIVE DATA

In this section, we first present the time and space performance of the SL-

Dynamic algorithm (Snell's-law-based using cached information when finding an

initial solution path a well as dynamically to achieve lower-bound cost

evaluations) and the 1:1 resolution wavefront-propagation algorithm. The test

problems are based on Mapi and a 2:1 cost ratio between high- and low-cost

traversable areas. In Table 14, we give a one or two letter code to identify test

problems (i.e., start and goal points). The coordinates of the start and goal can

be used to approximately position any problem on the maps of Figures 126 and

127.

In Table 15, we show some test results. We list the problem key ("Prob #"),

the bounding box area in coordinate system units ("Box Area"), the number of

search points in the problem ("SP"), the number of nodes expanded by the

wavefront algorithm ("Nodes Exp"), the time required to achieve a wavefront

solution path ("Time to Solve"), the number of line intersections calculated (both

attempted and successful) by the SL-Dynamic algorithm ("# of Ints"), and the

time required for the SL-Dynamic algorithm to reach a solution path ("Time to

Solve"). Recall that the number of search points (and thus the problem

description space) includes original region vertices, artificial region vertices (i.e.,

boundary points), and the goal. Table 15 spans two pages.

Problems a and k exemplify cases where a very small bounding box area

allows the wavefront algorithm to solve the problem in less time than the Snell's-

law-based algorithm required. (Note that the wavefront method still requires more

n problem-description space based on a comparison of bounding-box area versus the
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TABLE 14
PROBLEM DESIGNATION PROBLEM DESIGNATION 4.

MAPI PROBLEMS MAP1 PROBLEMS
Prob Start Goal Prob Start Goal
# (X,Y) (X,Y) # (X,Y) (X,Y)
a (78,23) (75,31) ac (52,16) 62,22)
b (78,16) (71,33) ad (31,40) (34,54)
c (81,51) (44,54) ae (31,40) (34,46)
d (77,53) (71,77) af (52,16) (78,28)
e (72,38) (92,58) ag (90,10) (4,92)
f (49,1) (57,23) ah (75,44) (77,53)
g (51,10) (13,70) ai (8,78) (14,59)
h (8,56) (23,84) aj (78,45) (77,58)
i (19,31) (43,68) ak (14,86) (13,39)
j (19,31) (38,70) al (8,61) (48,89)
k (29,19) (15,27) am (88,48) (43,9)
1 (13,35) (31,72) an (88,48) (75,27)

m (13,7) (45,100) ao (22,78) (13,83)
n (56,38) (8,78) ap (78,4) (80,38)
o (64,48) (92,51) aq (43,25) (40,92)
p (24,54) (7,81) ar (38,23) (46,33)
q (72,19) (77,58) as (68,41) (80,71)
r (43,48) (26,58) at (69,41) (80,70)
s (11,72) (40,91) au (49,59) (44,74)
t (48,4) (8,28) av (18,13) (11,45)
u (60,18) (40,69) aw (48,2) (46,16)
v (60,18) (79,61) ax (31,2) (43,41)
w (29,10) (58,50) ay (71,4) (64,18)
x (7,75) (40,91) az (72,11) (80,51)
y (8,17) (40,30) ba (71,12) (80,51)
z (60,31) (47,58) bb (8P,32) (96,128)
aa (42.66) (51,82) bc (1.81) (25,128)
ab (52,16) (66,24) 11

number of search points within the bounding box.) Problems bb and bc are

favorable to the Snell's-law-based method, in that the associated bounding boxes

encompass a large area but only a few search points. Problems i and j exemplify

the large performance difference that can be based on the accuracy of the initial

solution path (used to construct the bounding box and thus limit the search

space). In problem i, the goal is inside the large high-cost region near the center
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TABLE 15
_ SL-DYNAMIC. 1:1 RESOLUTION WAVEFRONT COMPARISON

Prob Box Wavefront Algorithm SL-Dynamic Algorithm

Nodes Time to A of Time to
Exp Solve (sec) Ints Solve (see)

a 90 5 87 5.95 79 9.28
b 304 6 297 23.53 304 10.88
c 1532 21 1282 123.33 675 67.36
d 1211 12 1062 108.67 232 33.28
e 759 12 689 60.23 340 36.11
f 701 9 543 49.58 159 15.45
g 6989 42 5115 692.1 3237 265.47
h 374 6 317 26.98 113 12.8
i 5993 42 3462 483.42 797 74.75
j 744 13 551 56.73 175 14.58
k 65 5 44 2.96 37 3.51
1 1497 16 1084 109.80 272 18.76

m 3690 28 3030 411.76 1190 95.75
n 4345 39 3527 423.17 1271 96.46
o 1246 9 1149 106.17 373 33.08
p 3207 24 2393 290.02 662 53.95
q 1086 14 970 108.05 299 39.02
r 1157 17 624 68.81 318 28.91
s 1847 20 1419 132.45 637 50.56
t 507 9 407 27.85 68 8.67
u 2442 31 1964 243.73 964 99.01
v 3061 24 2544 319.70 1226 129.13
w 617 11 446 35.07 167 12.87
x 1054 14 761 64.53 344 34.15
y 141L 11 1137 98.75 252 19.35
z 515 8 416 33.32 96 7.01
aa 501 14 384 29.61 133 17.20
ab 900 15 355 32.02 100 12.36
ac 471 10 229 14.35 30 3.23
ad 710 12 338 37.48 119 9.28
ae 156 1 74 5.76 7 0.73
af 2840 23 1368 132.32 307 36.20
ag 4814 35 4077 456.53 1 1285 117.51
ah 179 11 146 11.24 107 11.22

of the ternary-cost map. The initial solution path includes a long high-cost

segment from the goal to the high-cost region boundary closest to the start (at the

southern end of the high-cost region). In problem j, the goal is outside the same
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TABLE 15 (continued)

SL-DYNAMIC, 1:1 RESOLUTION WAVEFRONT COMPARISON ,"

Prob Bx Wavefront Algorithm SL-Dynamic Algorithm
Nodes Time to # of Time to

Area Exp Solve (sec) Ints Solve (sec)

ai 959 16 709 62.55 261 30.91
aj 238 8 152 11.87 134 16.76
ak 3253 20 2529 314.02 655 57.31
al 1817 22 1318 119.10 578 51.91

am 5436 31 3070 389.97 912 72.73
an 1833 13 965 100.30 316 37.47
ao 367 10 312 23.53 243 21.85
ap 201 4 199 18.18 44 5.27
aq 3543 32 2773 391.80 1535 135.88
ar 247 9 196 15.70 82 9.63
as 1297 13 1216 126.41 311 33.68
at 1434 16 1344 141.31 338 36.48
au 178 9 165 12.6 71 8.51
av 438 13 328 26.43 160 13.05
aw 186 5 160 12.48 88 8.45
ax 769 8 642 65.05 108 10.05
ay 213 3 180 12.7 26 2.88
az 537 11 510 50.46 133 12.18
ba 581 12 518 51.04 148 14.53
bb 1776 7 1562 234.91 92 8.96
bc 312 4 310 28.6 65 6.70

high-cost region, just above and to the left of the problem i goal. The initial

solution path for this problem consists of only optimal-cost links that travel

around the high-cost regions, and results in a much smaller bounding box.

Clearly, a more intelligent initial-solution path would speed up performance for

problem i.

The raw data of Table 15 show that the SL-Dynamic algorithm required less

problem description space for every test problem. This is not an absolute

guarantee however. In cases where region vertices are so numerous that there is

nearly a 1:1 correspondence between them and the wavefront lattice nodes, the
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Snell's-law-based method can require more storage space due to the inclusion of

artificial boundary points (which, in general, have rational-valued, not integer

coordinates). In most problems, the space required to store homogeneous-cost

region problem representations is much less than that required for lattice-based

representations that capture the same level of detail.

In Table 16, we summarize the mean node-expansion time (for a single node)

and the mean intersection time (for a single intersection) for the respective

algorithms. These measures provide reasonable characterizations of the two

methods that can be used to predict their approximate performance on other host

hardware/software systems. Recall from Chapter I that the Ellipse wavefront-

propagation method had a mean node-expansion time of 0.0008 seconds. The vast

difference between the compiled C-coded wavefront algorithm and the Prolog

version provides a general measure of possible performance improvements. While

the difference is not an absolute standard, it is indicative of the performance

improvement that can be made to the Snell's-law-based algorithm by recoding in

another more efficient language.

TABLE 16
MEAN PERFORMANCE FOR ALL TEST PROBLEMS (in seconds)

Wavefront SL-Dynamic
Mean
Node Standard Mean Standard

Expansion Deviation Intersection Deviation
0.1035 0.0276 0.0997 0.0161

Table 15 also evinces the time-requirement superiority of the Snell's-law-based

algorithm. Only in small problems is the time required by the SL-Dynamic

algorithm greater than that required by the wavefront technique. The fact that
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the wavefront algorithm solves small problems quickly suggests that decreasing its

resolution can allow the algorithm to achieve better time and space performance

than the Snell's-law-based method. In Table 17, we present test results that make

this issue more clear. Here, we have used some of the same test problems listed in

Table 15. Table 17 reflects the performance of a 2:1 resolution wavefront

algorithm. Note that changing the resolution by a factor of 2 decreases the

bounding box area by a factor of 4. Also, we are still relying on point sampling to

construct the problem-representation lattice.

TABLE 17
ALTERING RESOLUTION

Prob 1:1 Wavefront 2:1 Wavefront SL-Dynamic

# Area Time (sec) Area -Time (sec Time (sec)
e 759 60.23 190 15.36 12 36.11
f 701 49.58 175 14.3 9 15.45
n 4345 423.17 1086 74.22 39 96.46
af 2840 132.32 710 30.13 23 36.20
ag 4814 456.53 1204 94.93 35 117.51
ai 959 62.55 240 16.25 16 30.91
al 1817 119.10 455 29.05 22 51.91
aq 3543 391.80 886 55.49 26 135.88
as 1297 126.41 325 23.95 13 33.68
az 537 50.46 135 13.8 11 12.18
bb 1776 234.91 444 30.32 7 8.96

Some testing has also been completed for Map2 problems. This map has a

greater number of region vertices and a larger portion of the map is in high-cost

areas. The Map2 problems produce the same type of result as those that come

from Mapl. In Table 18, we define the (key) "Prob #" designations for a sample

of these problems. Table 19 presents the results of using a 1:1 resolution

wavefront, a 2:1 resolution wavefront, and the SL-None algorithms to solve the

same set of problems.
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TABLE 18
PROBLEM DESIGNATION PROBLEM DESIGNATION

MAP2 PROBLEMS MAP2 PROBLEMS
Prob Start Goal Prob Start Goal
# (X,Y) (X,Y) # (X.Y) (X,Y)
A (7,12) (72,47) F (38,9) (92,20)
B (44,37) (72,91) G (10,12) (64,26)
C (12,22) (44,104) H (35,70) (7,78)
D (67,29) (37,111) I (97,96) (27,108)
E (12,22) (36,80) J (20,80) (100,104)

TABLE 19
ALTERING RESOLUTION (Map2 Problems)

Prob 1:1 Wavefront 2:1 Wavefront SL-None
# Area Time (sec) Area Time (sec) SP Time (sec)
A 6174 682.35 1544 85.22 39 201.08
B 9380 1529.13 2345 145.12 64 569.58
C 8307 1244.65 2076 214.18 56 346.26
D 20418 3047.22 5105 973.05 83 1212.13
E 2986 308.88 747 57.37 62 74.20
F 4928 379.73 1232 87.37 26 117.08
G 5185 531.63 1297 103.76 30 197.88

2148 176.45 537 35.61 34 79.35
I 3846 346.75 962 68.03 34 120.63
J 3997 388.65 1000 77.25 34 72.58

Tables 17 and 19 clearly show that, for small problems, the low overhead of

the wavefront-propagation algorithm allows it to find a solution path in less time

than that required by the Snell's-law-based algorithm, particularly when there is a

large number of search points inside the bounding box. We discuss this result in

more detail in Chapter VII. A pertinent question that arises here however,

involves the cost of gaining improved time efficiency by decreasing resolution. The

amount of error, as measured by solution path cost, is essentially random.

333

oSW



F. WAVEFRONT PROPAGATION PATH-COST ACCURACY

We have seen that decreasing the resolution of the wavefront propagation

lattice decreases the time requirements of the algorithm. We now demonstrate

how decreasing representation resolution can have a random effect on the

accuracy of resulting solution paths. In Figures 128 through 135, we show only

the portion of the ternary-cost map that remains inside the bounding box (after

the initial solution path has been found). Each figure also shows the bounding

box itself. The solidly-darkened polygons in the figures represent obstacles while

the lightly-shaded polygons depict high-cost traversable areas. The unshaded

background is the optimal-cost traversable area. The series of thick line segments

connecting the start and goal is the Snell's-law-based algorithm solution path.

The series of thinner line segments between those two points is a wavefront

solution path (at the resolution indicated in the figure, 1:1 is high resolution, 2:1

is low resolution).

In each problem illustrated in Figures 128 through 135, the Snell's-law

algorithm provides the lowest-cost solution path. This phenomena occurred in

every test problem reported in +his chapter; the Snell's-law-based method always

provided a lower-cost solution path than the wavefront-propagatiom algorithm.

Based on this evidence and the fact that Snell's law results as a consequence of

using derivatives to characterize minimum-cost paths (as developed. in, Section

IV.C), we hypothesize that the cost of a Snell's-law-based solution path is a lower

bound on the cost of a wavefront-propagation path (for the same problem). We

have not been able to prove this hypothesis due to the effects of numerical-

computation errors on the Snell's-law solution paths. However, we know that the
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Snell's-law method provides lower-cost solution paths in each of the example

problems below. Thus, in the following discussion, we assume that the Snell's-law

solution is the standard and that the wavefront algorithm solution paths have

some % added cost relative to the cost of the Snell's-law solution path.

low resolution wavefront
osolution(- )

cost 69.21 time 95

........... !:!.........t m 1
. ............

sol utio n(-)

start

Figure 128. Problem ag, Low Resolution

Figures 128 and 129 display the low- and high-resolution wavefronts solution

paths to the same problem compared to the Snell's-law-based solution path. This 1

is problem ag of Table 17. The high-resolution wavefront solution path has an

added cost of 7.8% when compared to the Snell's-law-based solution path. The
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oal Snell 's law

solution( -)

cot cost 62.45
.....................

Figure... 12.Poletgih Resluio

.. ... . ..... ,.° ... ...../ ........ ...........
..,............ ..... ..

• .............. • .......
.,.......... ...... .. ...

..............

Figres13 anr1shownh souipahacivdbtetremthdfr

prbe l gitehg-eouinwavefrontsouinptisabte

aprxmaintoteSel'-awbsdsolutionpt.hvn n de oto

cost.......

8.ste whl| ow-resoalonh raefrnd solution path havina 10.85% added cost.

Note that both wavefront algorithms provide solution paths that go through an

obstacle region (near the goal). This is due to a modeling anomaly in our point-

sampling method of constructing the lattice. The resolution of the lattice is not
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high enough in either case to capture the fact that some of the solution path is

IN inside an obstacle area. These solution paths suggest that even a 1:1 resolution is

not sufficient to ensure strict solution path feasibility.

low resolution wavefront

wave front~

solution(-)

cost 31.86

time 219.05 Ps o

: ; :': .. ..... ......... ==============

Figures 132 and 133 both depict solution paths to the Map2 problem G of

Table 19..Note that both wavefront algorithms yield solution paths that are very

different physically from the Snell's-law-based solution path. The non-digitally-

biased version of the path represented by the wavefront solution paths was

actually found by the Snell's-law-based algorithm during execution. However, the
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high resolution wavefront -

solution( - )

cost 31.2 2

~~~~~~~~....... iii:i:~ i: i ....

sltien119

cost 28.87 time 51.9

Figure 131. Problem al, High Resolution

path has a slightly higher cost (37.21) than the "southern" route selected as the

* optimal-cost solution path. Both wavefront solution paths have approximately

* 7% added cost.
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low resolution wavefront
................................................................................solution(- ) ............................................................... I ................................................................................................................................... .............................cost 39. 09 ................................

....... ............................. ... . . . ........................................time 103 ... ... . ................................ ... ....... . ................ ....... I ........................................... ............................. ................................................................................................... .................. ............ .............% .................................. ............................... ............................... ..................
....................... ..................................................... .....

...............................................
start .....................

SnJi s law
solution(----i

cost 36.46 time 197

Figure 132. Problem G, Low Resolution
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...................... ..........
................................ .........................

......... .. .........start ..................... ...... .. .. ... .... .I .............. ....... .............
.............

Snell's law
solution(

Qcost 36.46 time 197

Figure 133. Problem G, High Resolution
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low resolution wavefrontsolution(-)

" cost 67.54
me 145

Snell's law "...

.- ... ...

...... .... . ......... .. ---... ..... ., .- .

Figure 134. Problem B, Low Resolution

Figures 134 and 135 clearly exhibit the random nature of the % added cost

caused by low-resolution problem representations. (These figures depict solution

paths to problem B of Table 22.) The 2:1 wavcefront algorithm misses the

optimal-cost "alley" included in the solution path found by the other two

methods. This results in the Z,,.Y ,, added cost of the low-resolution wvavef'ront

solution path. The high-resolution solution path has a .9 added cost.
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Figure 137. Problem 1, 6:1, 8:1, 12:1 and 24:1 Resolutions

and 137 show solution paths to a Mapl problem while Figures 138 and 139 come

from a Map2 problem. Note that in both problems, cases occur where a lower-

resolution problem representation allows a more accurate solution path than that
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Figure 138. Problem 2, 1:1, 2:1. 3:1 and 4:1 Resolutions

found when using higher resolutions. The random nature of the accuracy is due

to the (essentially) random manner in which the ternary-cost map is sampled.

The cost rate for the point on the ternary-cost map having the same coordinates
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Figure 139. Problem 2, 6:1, 8:1, 12:1 and 24:1 Resolutions

as the lattice node is used as the cost rate for that node. In Figure 137 for

example, the 24:1 resolution wavefront algorithm assumes that the solution path

is comprised of entirely optimal-cost links since each lattice node on the solution
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path happened to have optimal cost. Thus, the effect of decreasing resolution to

, improve time performance has a random effect on the amount of error in solution

paths. In fact, solution path feasibility may not be maintained at decreased

resolutions. This can occur when two adjacent lattice nodes are separated on the

area-cost map by a thin obstacle area (such as a fence). In this case, the lattice-

based problem representation may not capture the fact that a path between these

two adjacent lattice nodes is infeasible.

G. ALTERING COST-RATE RATIOS

We have also completed some testing where cost rate ratios are different than

2:1. The effect of this change on the wavefront algorithms is totally predictable.

Lower cost ratios (i.e., 1.5:1) allow the algorithm to execute more quickly whilee higher ratios slow it down. This is most easily explained using the view of the

wavefront algorithm as a simulation of the passage of time. Cells having higher

costs require more time units to pass before the wavefront can be propagated

through them. The converse is true for lower-cost cells.

The effect of altering cost ratios on the Snell's-law-based algorithm is not as

obvious. In Table 20, we display the results of using the SL-Static algorithm to

solve problems having some of the same start and goal locations on the same

ternary-cost map while assigning different cost rates to the homogeneous-cost

regions. The ratios 1.2:1, 2:1, and 6:1 were used. (Table 20 also includes data

columns to show the number of wedges searched out of the number of wedges

made (the "ws/wm" column). This data is analyzed below.) A primary effect of

A changing the cost ratio is that of altering the size of the bounding box. In
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problems where either the start or goal (or both) is inside a high-cost region, at

least some portion of the initial solution path must include a non-optimal-cost P'4

link. When the cost ratio is high (i.e., 6:1), this results in a larger bounding box,

requiring more search effort because, in general, larger bounding boxes include

more search points. A second effect of changing cost ratios has to do with the

number of wedges that are searched. When the ratios are high, reflections occur

more frequently. In general, this results in more empty wedges and thus fewer

wedges are searched. These two effects of changing cost rate ratios interact with

each other so that the performance of the Snell's-law-based algorithm is not

predictable over similar problems involving homogeneous-cost regions with like

geometry but different cost-rate ratios.

TABLE 20
ALTERING COST-RATE RATIOS

Prob SL-Static 1.2:1 SL-Static 2:1 SL-Static 6:1
# ws/wm Time (sec) ws/wm Time (sec) ws/wn Time (sec)
e 17/28 27.05 25/46 35.40 29/50 30.95
f 11/14 9.08 18/25 15.63 14/20 10.31
i 21/34 34.08 24/45 74.20 56/98 187.02

m 60/104 128.05 48/77 94.50 42/66 78.30
v 35/57 53.55 51/91 128.65 89/140 317.48
x 14/22 10.13 26/48 33.55 19/34 36.95
z 10/13 6.95 10/13 6.98 10/13 6.96
aa 17/26 11.66 15/26 17.06 18/32 19.50
ab 8/11 4.18 9/20 12.33 12/25 35.48
ag 44/83 131.82 43/82 124.53 29/77 103.88
ba 18/32 32.02 14/24 20.41 17/27 18.18

Table 21 allows a comparison of the SL-Dynamic and SL-Static algorithms on

the same problems presented in Table 20. (Recall that SL-Dynamic uses stored

information many times during algorithm execution and SL-Static uses such

information only once to gain an initial solution.) Comparing the performance of
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these two algorithms on the same problems provides a measure of the benefits

,available by using stored path-cost information to calculate lower-bound cost

evaluations. Note that dynamically using stored information does not always

improve performance. In fact, only problems ag and ba reflect improved

performance for the SL-Dynamic algorithm. However, the overhead involved in

using stored information in this manner is small, a conclusion also supported by

the data sample of Table 21. Thus, it is a good practice to use the information

when it is available (from stored solutions to previously solved weighted-region

problems for example). We also note that it is difficult to determine beforehand

those cases where using such information results in performance improvements.

TABLE 21
SL-DYNAMIC AND SL-STATIC ALGORITHM PERFORMANCE

Problem SL-Dynamic 2:1 SL-Static 2:1
# ws/wm T-ime (sec) ws /wm Time (sec)
e 25/46 36.11 25/46 35.40
f 16/25 15.45 18/25 15.63
i 24/45 74.75 24/45 74.20

In 48/77 94.75 48/77 94.50

v 51/91 129.13 51/91 128.65
x 26/48 34.15 26/48 33.55
z 10/13 7.01 10/13 6.98
aa 15/26 17.20 15/26 17.06
ab 9/20 12.36 9/20 12.33
ag 40/77 117.51 43/82 124.53
ba 9/17 14.53 14/24 20.41

In a similar vein, we can compare the performance of the SL-None algorithm

based on the data of Table 19. Recall that the SL-None algorithm does not use

any stored cost information when determining an initial solution path. It solves

the problem as if it were a binary problem and then computes the actual cost of

the solution path on the ternary-cost map. As a result, SL-None initial solution
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paths tend to have a larger amount of high-cost path segments. Larger bounding

boxes usually occur when using this scheme. In general, the bounding box areas

depicted in Table 19 (as well as the number of search points) are high compared

to the data presented in other tables. Clearly, the execution times reported in

Table 19 are much higher as a result. Therefore, it is a good practice to use all

available information when calculating an initial solution that will be used to

construct the bounding box.

A final comparison we make is intended to provide some measure of the

pruning criteria that have been implemented. We have counted the total number

of wedges made and searched in each of the Snell's-law-based algorithm test

problems. (The data point corresponding to problem ae was eliminated because

only the two initial wedges were created and searched. The only search point in

this problem was the goal itself; thus, there were no opportunities for wedge V

refinement or pruning.) The mean percentage of wedges searched out of those

made is 59.7 per cent. There is a standard deviation of 8.82% in the data sample.

The minimum percentage of wedges searched was 41.2% while a maximum of

81.8% of the wedges were examined. Thus, even the simple pruning criteria that

have been implemented are able to eliminate from the search tree, on the average,

almost half of the wedges created.

H. SUMMARY

Clearly, the Snell's-law-based algorithm requires less problem-description

space than does the wavefront algorithm in almost every case. The Snell's-law-

based method also solves weighted-region problems more quickly than does the
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1:1 resolution wavefront. Lower-resolution wavefronts execute in less time, but

sacrifice accuracy, and the amount of % added cost contained in their solution

paths is essentially random. It is apparent that the time required by the Snell's-

law-based algorithm depends primarily upon the number of search points that are

inside the bounding box. Thus, the effort devoted to finding a good initial solution

path is well spent since smaller bounding boxes usually contain fewer search

points. Chapter VII provides a more detailed analysis of the time issue. A

principal goal of the next chapter is the development of criteria that facilitate the

selection of the most favorable algorithm, given a specific instance of the

weighted-region problem.
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VII. CONCLUSIONS

A. INTRODUCTION

In this chapter, we summarize the strengths and weaknesses of both the

Snell's-law-based algorithm and the wavefront-propagation algorithm. The

discussion is based upon properties of the two algorithms as demonstrated by

their implementations used for testing in Chapter VI. We also address the

development of criteria helpful in deciding which method to use when confronted

with specific instances of the weighted-region problem. Finally, we briefly discuss

related application areas for the Snell's-law-based algorithm and possible

extensions to the technique.

B. WAVEFRONT PROPAGATION: STRENGTHS AND WEAKNESSES

A primary advantage of the wavefront-propagation algorithm lies in its

simplicity. The method requires little more than applying a uniform-cost search to

a lattice-like graph. In software engineering, the number of lines of code used to

implement a strategy is sometimes used as a crude complexity measure for that

strategy. We implemented the wavefront-propagation algorithm of Chapter VI in

approximately 200 lines of Prolog. This compares to the more than 3000 lines of

Prolog used to implement the Snell's-law-based strategy of Chapter VI.

The simplicity of the wavefront algorithm is chiefly responsible for

establishing its stability; the algorithm always provides a solution path. Further,
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based on a simple metric, (the size of the bounding box determined from the cost

S of the initial solution) we can estimate, a priori, the time required by the

algorithm to solve a given weighted-region problem. Since the algorithm only

relies on simple arithmetic computations (i.e., no higher-order computations such

as trigonometric calculations) numerical issues related to machine (or language)

precision do not seriously affect wavefront propagation. (We note that simple

arithmetic operations are also subject to precision and accuracy errors. However,

their effect is small compared to the numerical issues that can affect the Snell's-

law-based algorithm.) In short, the wavefront algorithm is simple and stable. It

also has highly-predictable time-and-space requirements (as demonstrated below

in Section VII.D).

The simplicity of the method has attendant drawbacks. The digital bias

S inherent in the lattice-based problem representation influences the technique so

that wavefront propagation is, essentially, incapable of finding exact solutions to

weighted-region problems. Also, the cost accuracy of wavefront-propagation

solution paths is randomly influenced by representational resolution. One way of

improving the accuracy of the wavefront method requires increasing the number

of nodes (the resolution) in the lattice-based problem representation. Recall that

increasing resolution by a factor of X increases the size of the lattice by X 2 . This

size increase translates directly into greater time-and-space requirements.

Accuracy can also be improved by increasing the branching factor at each node in

the lattice. While increased branching factors do not increase space requirements

(since links are computed, not explicitly stored), the time required to search a

graph with a higher branching factor does increase.
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Even when using a very high resolution, digital bias can significantly affect

solution path cost accuracy. Because of digital bias, the solution paths provided

by wavefront propagation are optimal in the sense of a "Manhattan" or "city

block" metric. Here, optimality is measured based on the search of a finite graph

whose nodes represent every possible turn point that can be included on any path.

The branching factor at each node determines a finite number of heading changes

that any path can take at each turn point. We have seen that there is,

essentially, an infinite number of possible turn points and heading changes that

must be considered when attempting to find optimal-cost solution paths for the

weighted-region problem. Thus, no finite amount of increased resolution or

branching factor can overcome the inaccuracy inherent in a search strategy that is

based on a "Manhattan" metric.

In Section II.E.2.c we described an implementation of the wavefront algorithm

that exploits parallelism. However, the advantages of parallel machines are not

realized until a relatively large number of processors are in use, although large

numbers of processors can greatly improve the time performance of the algorithm.

Mesh-connected architectures offer the potential for the development of

wavefront-propagation algorithms having linear time complexity (with respect to

the number of lattice nodes on a solution path).

A final difficulty with the wavefront algorithm concerns the costs assigned to

the lattice nodes describing the area-cost map. We have noted that this is a

difficult problem because of the resolution and cost-aggregation issues that must

be resolved. It seems that the problem of assigning aggregate cost rates to lattice

nodes admits more approximations into the wavefront algorithm problem
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representation. More approximations can mean that solution paths will be less

0accurate. Some simple cost-aggregation strategies (such as point sampling) may

not even ensure path feasibility.

In summary, the wavefront algorithm is simple and robust. However, it can

have large time-and-space requirements (when compared to the Snell's-law-based

algorithm for example). If decreased resolution is used to lessen these

requirements, unpredictable cost errors in solution paths can occur. When

parallelism is exploited to reduce execution time requirements, the digital bias

problem still remains to adversely affect solution accuracy. Two distinct sources

of error in the wavefront-propagation algorithm are based on the problem

representation. The number of nodes in the lattice as well as the branching factor

at each node affect the accuracy of wavefront-propagation solution paths.

C. SNELL'S-LAW-BASED ALGORITHM: STRENGTHS AND WEAKNESSES

A principal advantage of the Snell's-law-based method is that it provides more

accurate (i.e., lower cost) solution paths than those found by the wavefront-

propagation algorithm. (Recall from Chapter VI that, in every test problem, the

Snell's-law-based method found a lower-cost solution path than did the wavefront

algorithm.) Moreover, in comparison to the wavefront method, path-cost

accuracy is not achieved with large execution-time requirements. The testing

reported in Chapter VI also showed that the Snell's-law-based method generally

had lower problem-description space requirements than the wavefront-

propagation algorithm. The average-case time performance of the Snell's-law-

based algorithm seems to be quadratic in the number of search points inside the

bounding box (as illustrated in Section VII.D, Figure 140B).
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The Snell's-law-based strategy is suitable for parallel implementation. Recall

the tree of wedges illustrated in Figure 124B. The iterative solution of Snell's law

within each wedge is independent. Thus, a different processor can be assigned to

iteratively solve Snell's-law problems within each newly-created wedge. The only

inter-processor communication necessary during search involves the upper bound

on the cost of the optimal-cost solution path. If sufficient processors are available,

pruning based on an upper bound can be abandoned and an exhaustive search

conducted so that every known wedge is searched. If an upper bound is not used,

then it never needs to be updated so it never needs to be written. Thus, the

locking protocols [Ref. 54] needed to allow multiple processors to write data are

superfluous and no communication is necessary between processors. (Note that no

inter-processor communication is required for each processor to read the area-cost

map since read operations can be conducted in parallel without locking.) Also,

even low levels of parallelism can be exploited by the Snell's-law-based algorithm.

For example, if two processors are available, one of the two initial wedges can be

assigned to each of them.

The Snell's-law-based algorithm does not suffer any problems related to digital

bias. It is always able to find straight-line solution paths and describe them by

only two path endpoints. Thus, the Snell's-law-based method also provides

minimal descriptions (in terms of space) of solution paths. Wavefront solution

paths are described as a series of points, one for each lattice node on the path

(according to the resolution in use). Snell's-law-based solution paths only include

the coordinates of the start, goal, and any intermediate turn points on the

optimal-cost path between them.
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Resolution of the area-cost map can be used to define the desired cost

accuracy of solution paths. As an example, modeling a jagged-boundary region by

a polygon with only a few vertices can result in an approximate solution,

relatively quickly achieved. A more accurate model of the region (i.e., a polygon

with more vertices) supports a more accurate solution, arrived at more slowly.

Thus, we can predict the effects of altering the resolution of the homogeneous-cost

region problem representation. A higher resolution representation generally

results in a more accurate solution. Also, as should be expected, solution paths

based on high-resolution representations require more time and space to be

achieved.

The more intelligent problem representation used by the Snell's-law-based

method results in several benefits. It not only requires less problem-description

Nace (on the average, as shown in Chapter VI) and eliminates digital bias, but it

eliminates the cost-aggregation problem as well. When using a homogeneous-cost

regions to represent the problem, it is simple to ensure that important areas of the

area-cost map are not overlooked. Moreover, it is also simple to use different

resolutions for different parts of the same area-cost map. That is, if some portions

of the area-cost map seem most important, they can be described by polygons

having many vertices. Other, less important areas can be grossly modeled by

polygons with fewer vertices.

The Snell's-law-based algorithm can also adapt to dynamically-changing map

information. For example, suppose that an instance of a weighted-region problem

has been solved. As a side effect of solving the problem, the area-cost map is

divided into a set of wedges. It could occur that during execiation of a planned
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route, an agent might update the information on the area-cost map, based on

locally-sensed information. Suppose that an area originally thought to be

traversable at high cost is found to be an optimal-cost region. In this case, only

those wedges that intersected the original (erroneously classified) high-cost region

need be considered to find a new optimal-cost path based on updated information.

Those wedges that did not intersect the newly-classified area on the original area-

cost map are clearly not affected by that area's elimination from the map.

Assuming that a solution path has already been found, the wavefront algorithm

can only utilize updated map information by re-solving the entire problem again.

This is because the wavefront method searches over the area-cost map as an

entity while the Snell's-law-based strategy divides the map into independent

wedges. A similar characterization of the two algorithms arises when a previously

unknown high-cost region is found to be on the optimal-cost solution path. Thus,

because the Snell's-law-based approach supports the division of the map into

independent areas (the wedges), it is able to reason about changing map

information more efficiently.

Recall that the ADS wavefront implementation (Section III.E.2.c, [Ref. 36])

actually finds the optimal-cost path (in terms of the Manhattan metric) from

every point on the map to the goal. This can be useful when an agent wanders

off-course during the execution of a planned route. In this event, the agent need

only locate itself in the correct map cell and "look up" the previously computed

optimal-cost path from that cell to the goal. A similar "look up" operation is not

possible when the goal location changes (perhaps a new goal is assigned while the

agent is enroute). Again, the Snell's-law-based method can exploit its division of
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the map into wedges to efficiently handle these situations. If the goal's location or

Othe agent's location is changed but is still within the wedge containing the

solution path, the solution path can be locally adjusted (within the wedge). If the

location change moves either point to a new wedge, only those wedges that

contain that point need be examined to find a new optimal-cost path.

The accuracy, relative speed, and robustness of the Snell's-law-based

algorithm come at the expense of its complexity. The algorithm is more difficult

to comprehend and implement than the wavefront approach. In many ways, the

algorithm is made even more complex by numerical issues. There must be

provisions for dealing with boundary cases of trigonometric routines and line-

intersection routines. Because of this, numerical issues can slow the algorithm's

convergence to a solution. A final problem with the Snell's-law-based approach is

that its time and space requirements are not highly predictable (in comparison to

those of the wavefront algorithm). Opportunities for pruning occur, more or less,

randomly. Thus, it is difficult to determine, a priori, highly-accurate estimates of

the time required by the Snell's-law-based algorithm to solve a specific weighted-

region problem. Also, we have not been able to establish polynomial complexity

bounds (in time or space) for the Snell's-law-based algorithm in worst-case

situations. However, this worst-case bound may not be very meaningful. Again

we draw an analogy between our Snell's-law-based algorithm and the simplex

algorithm used to solve linear programming problems. Both algorithms have

exponential worst-case time bounds. However, both algorithms perform well in the

average case.
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D. SELECTING THE APPROPRIATE SOLUTION METHOD

Both the wavefront-propagation technique and the Snell's-law-based

algorithm have advantages and disadvantages. Often, one method is better suited

to a specific requirement than the other. As an example, when accuracy of the

solution is of paramount importance, the Snell's-law-based approach is most

appropriate. Under any circumstances, the digital bias inherent in the problem

representation used by the wavefront-propagation algorithms prevents them from

achieving highly cost-accurate solution paths for weighted-region problems.

The Snell's-law-based approach is the most appropriate method in several

circumstances. When many problems involving the same map must be solved,

the Snell's-law-based method is the technique of choice since it can utilize a

primitive form of learning to improve its performance over time. While the

wavefront-propagation algorithm can use known solutions to aid in finding initial

solutions, the Snell's-law-based algorithm can use known solutions (even after the

initial solution path has been found) to compute lower-bound cost evaluations,

enhancing pruning capabilities. The wavefront algorithm does no pruning after

initialization so it does not fully exploit stored information. If a low level of

parallelism is available, the Snell's-law-based method is preferable. The wavefront

technique can utilize highly-parallel architectures, but its performance is not

much enhanced by the availability of only a few additional processors. When

space constraints are severe, the Snell's-law-based method is preferable since it

generally requires less problem-description space. The Snell's-law-based method is

also the technique of choice when the map information is likely to be changing,

dynamically. Time constraints can also determine the most appropriate method.
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The wavefront algorithm can require less time when the area of the bounding box

is small or when there is a large number of region vertices to be considered.

Figures 140A and 140B make this trend more apparent. In Figure 140A we have

plotted the time required by the wavefront-propagation algorithm to reach a

solution (on the vertical axis) versus the area of the bounding box (on the

horizontal axis) for each problem in the set of test problems reported in Chapter

VI. Recall that the area of the bounding box is approximately equivalent to the

number of nodes in the lattice-based problem representation used by the

wavefront-propagation algorithm. The unshaded circles represent 1:1 resolution

wavefront performance while the darkened circles depict 2:1 resolution wavefront

performance. (Also, recall that solving a problem at 1:1 resolution requires 4 times

as many lattice nodes as solving the same problem at a 2:1 resolution. The data

,points in Figure 140A reflect this fact as the darkened circles are all lower on the

area scale than the open circles, even though they represent performance on some

of the same start-to-goal problems.) We have fit a straight line to the data using

least-squares regression. Figure 140B is a similar illustration derived from the

Snell's-law-based algorithm performance on the same set of test problems. In

Figure 140B, the time required to solve the problems is plotted along the

horizontal axis while the square of the number of region vertices located inside the

bounding box is plotted on the vertical axis. Note that this data supports a

quadratic average-case time complexity for the Snell's-law-based algorithm (with

respect to the number of vertices in the bounding box).

The regression lines in Figure 140A and 140B can be used to predict the

(approximate) solution-time requirement of either algorithm once the bounding
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box has been constructed. Specifically, the are& of the bounding box (measured in

the same units as the resolution of the lattice-based problem representation)

predicts wavefront-propagation time while the square of the number of region

vertices inside the bounding box predicts time requirements for the Snell's-law-

based algorithm. Thus, when the time required to solve a specific instance of the

weighted-region problem is of paramount importance, we can use these regression

lines to select the technique that promises a solution in the least amount of time.

The resolution (or grid size) of the lattice used by wavefront propagation is

immaterial in this comparison since the bounding box area must be expressed in

the same units as the lattice resolution. The direct comparison value of the

linear-regression predictors is more clearly seen in Figure 141 where the two

regression lines appear together. The direct comparison is valid since Figures 140A

and 140B are based on exactly the same set of test problems.

Issues of accuracy aside, the wavefront algorithm may turn out to be the

technique of choice based on time-requirement predictions, particularly if a low-

resolution wavefront can be applied. The technique can also be most appropriate

when stability and simplicity are desired. The wavefront can also be the best

strategy when region vertices are tightly grouped in small areas, a situation that

frequently gives rise to numerical problems for the Snell's-law-based algorithm.

In summary, the Snell's-law-based method provides less costly (and thus more

accurate) solution paths than does the wavefront-propagation algorithm. When

region vertex density (within the bounding box) is relatively low, it is also the

most time and space efficient method, especially when the bounding box includes

a large area. However, the Snell's-law-based method has a higher worst-case
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complexity bound than the wavefront algorithm. Thus, for problems where an

approximate solution is sufficient, wavefront propagation can be the technique of

choice.

E. POSSIBLE EXTENSIONS

Our implementation of the Snell's-law-based algorithm is a prototype. It

remains to move beyond the ternary-cost map restriction. We would need to

recode the algorithm to correctly solve weighted-region problems on area-cost

maps featuring different cost regions which abut each other (i.e., each high-cost

region should not be required to be surrounded by an optimal-cost region as

described in Section VI.B.2). These alterations can be accommodated into the

program logic with little effort.

There are many opportunities to enhance the pruning abilities of the Snell's-

law-based algorithm. Currently, only a very primitive form of learning is possible.

The algorithm could make better use of stored information, much as humans are

able to use previously known routes to aid in selecting new ones. As an example,

we could enhance the algorithm with the ability to learn that some areas of the

map (almost) never contain portions of optimal-cost solution paths and eliminate

(or postpone the search of) these areas. Clearly, a more powerful learning

component can lower the time requirements of the Snell's-law-based. algorithm.

There are some issues involved in indexing the most helpful information that

must be overcome (this is similar to the indexing issue in the MOLGEN program

discussed in Section II.C.5). Also, it should be possible to use previously-

computed wedges as well as path costs to decrease time requirements. Sometimes,
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the same wedge is reconstructed during the solution of different start-to-goal

problems that come from the same area-cost map. Saving previously computed

wedges could reduce computational effort in such instances.

In many cases, the initial solution is actually the optimal-cost solution or is

physically very close to it. This occurs most often when cost-rate ratios are high

(6:1 for example). There should be some way to detect the optimality of initial

solutions, without resort to search (as is currently the case). ( As an example, in

the Appendix, the first demonstration problem relies on the optimal-cost solution

path as the initial solution. In this case, the algorithm uses search only to verify

the optimality of the initial solution.) Developing such criteria can improve the

performance of both the wavefront-propagation and the Snell's-law-based

algorithms. In the same vein, the development of simple methods to achieve

lower-cost initial solutions is a worthwhile extension. Lower-cost initial solutions

result in smaller bounding boxes that can include fewer region vertices.

Finally, the development of a system that dynamically selects the best

algorithm for application in a specific situation is desirable. It is possible to

intermix use of the Snell's-law-based algorithm and the wavefront-propagation

algorithm during the solution of a single problem. A wavefront can be

propagated only within a wedge as an example. Selection of a method to apply

can be based on knowledge about wedges: how large they are and how many

search points they contain. There may also be a method to use a fast, low-

resolution wavefront to limit the search space for an accurate Snell's-law-based

algorithm.
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F. OTHER APPLICATION AREAS

The Snell's-law-based algorithm we have described is intended for use in

planning optimal-cost land routes. We note that cost is generic. The Snell's-law-

based algorithm assumes an appropriate area-cost map, without regard to the cost

measure or the agent for which the route is to be planned. Thus the algorithm can

also be applied, without change, to plan the location of overland pipelines or road

networks, provided with appropriately classified area-cost maps. In general, the

algorithm is applicable to any problem where the solution is the location of an

optimal-cost route through a two-dimensional space of homogeneous-cost regions.

The algorithm can be slightly modified so that it returns a set of feasible

routes through the space represented by the area-cost map. In general, the

algorithm computes multiple solution paths, the least-cost of which is returned as

the optimal-cost solution path. When multiple paths are required, the algorithm

can be used by "turning off" pruning, causing all feasible solution paths to be

found. Similarly, the n best paths can be found (when at least n feasible paths

exist). In this form, the algorithm is suitable for finding multiple avenues of

approach to a single goal location.

The algorithm can also be used to find the shortest distance between regions

(i.e., polygons). The CDA, reported in [Ref. 42] has been used for this purpose. To

achieve these results, the start and goal are embedded in "zero-cost" regions such

that the cost accrued by traveling from anywhere in the interior of the region to

any of the region boundaries is zero. Given this configuration, the start-to-goal

solution path includes the shortest (weighted) distance path between the two

zero-cost region polygons [Ref. 3].
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Ray tracing is a basic operation for the Snell's-law-based algorithm. Thus

some portions of the algorithm are suitable for use in applications concerned with

tracing the paths of light rays through translucent materials. Normally, lighting

and shading algorithms compute the light intensity (from a point source) for each

screen pixel on a computer graphics monitor. We can apply "wedges of light" to

this task, resulting in groupings of pixels that have a uniform intensity due to a

light source located at the wedge tip. Some modifications are necessary for the

algorithm to fit the application. However, there are key similarities in the two

problem areas.

G. SUMMARY

Snell's law can be applied to the weighted-region problem. This principle of

optics serves as a local optimality criterion, much as the straight-line hypothesis

has been employed by the VGraph algorithm in solving binary-case problems. Use

of Snell's law also facilitates a more intelligent problem representation that

describes regions, not arbitrary grid cells in a lattice. Applying Snell's law to this

type of problem representation results in an algorithm that does not suffer many

of the deficiencies inherent in the wavefront-propagation technique. The Snell's-

law-based algorithm provides more accurate solution paths (at a lower time cost)

than the wavefront-propagation algorithm. In general, the Snell's-IE.w-based

algorithm also requires less problem-description space. When the time required to

solve a specific instance of the weighted-region problem is of paramount

importance. we can select the technique that promises a solution in the least

amount of time.
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The Snell's-law-based algorithm we have presented employs several ideas

commonly used in artificial intelligence. An informed strategy (A*) is used to

conduct a search over a dynamically created graph that is based on a specific

weighted-region problem. This graph is created based upon an appropriate

problem representation that models regions, not discrete points. Previously

computed solutions can be used to limit the search effort, both globally and

locally. Recursive problem decomposition is applied (at diffraction vertices).

Heuristics are used to order search efforts (through the agendas).

Thus the algorithm relies on interdisciplinary precepts. A principle from

optics serves as the local optimality criterion; optimization is used to constrain

search; computer-science techniques are used. These principles are combined to

form an algorithm that has a firm mathematical basis and is capable of providing

accurate solutions to instances of the weighted-region problem while often

conserving both time and space.
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APPENDIX (DEMONSTRATION)

Section V.J included a demonstration of our Snell's-law-based algorithm as it

found the optimal-cost path between a start and goal both embedded in high-cost

regions. We now illustrate the solution process of the algorithm as it solves two

new problems. In the first demonstration problem, both the start and goal are

located in low-cost regions. In the second problem, one point (the start) is inside a

high-cost region while the other is in a low-cost area. Both problems are taken

from MapI and feature a 2:1 ratio between the cost rates of the traversable

regions. The SL-Static algorithm was used to solve both problems. (Note that all

figures and tables are located at the rear of the appendix, after page 378.)

In the first problem, the start is located at coordinates (56,38) and the goal at

coordinates (31,73). The problem is illustrated in Figure 142. This figure also dep-

icts the initial solution path and the bounding box that was created based on the

cost of this path. For the first problem, the initial solution turns out to be the

optimal-cost solution path. Table 22 provides a wedge identification ("Wedge

ID") that can be used to correlate the wedge tree of Figures 143A and 143B to the

wedge illustrations in Figures 144 through 158. The first column of Table 22 lists

the Wedge ID, exactly as used in the wedge tree of Figure 143A. These

identifications have the form "WX" or "RWX" where "X" is an integer. A wedge

denoted as "RWX" is a reflection wedge while those denoted "WX" are regular W

(non-reflection) wedges. Note that the reflection wedges are listed at the end of

Table 22 (which spans more than one page).
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The second column of Table 22 lists the left and right wedge-defining Snell's-

law paths as a series of turn points. The path that defines the wedge left boun-

dary is listed above the path defining the right wedge boundary. Each turn point

has a letter designation. Path intersections with the bounding box are denoted as

"zX" where "X" is an integer. This same convention for path description is used

in Figures 144 through 158. Table 22 also includes the A* evaluation of each

wedge in the form "g(W)+h(W)=f(W)". (We use this form for brevity in table

headings.) Recall that g(W) is a known cost associated with the wedge approach

path, h(W) is a lower-bound cost evaluation of a start-to-goal path within the

wedge, and f(W) is the total-cost evaluation for the wedge (which is also a lower

bound).

Figures 143A and 143B depict the wedge search tree. Each node lists the

Wedge ID (from Table 22) and the wedge's total-cost evaluation (i.e., the f(W)

value). When a circled number appears above the Wedge ID, it indicates that the

wedge was searched and in what order it was removed from an agenda. Note that

some wedges in the tree have a branching factor of 4 due to reflection wedges.

These wedges are indicated by appropriate Wedge ID's (starting with an "R")

and by a dashed line showing ancestry.

Some nodes in the tree do not have all 4 possible sub-wedges (or child wedges).

For example, the left child of wedge W7 (Figure 143A) was not created because it

would have overlapping left and right wedge-defining Snell's-law paths. This can

be seen in Figure 150. The left sub-wedge would have path S-i-l as both the left

and right wedge-defining path, creating an empty wedge. Thus, the algorithm did

not expend the effort to create this sub-wedge.
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Similarly, some wedges do not have specific child sub-wedges due to obstacles.

, For example, in Figure 144, a left child of wedge W1 was not created because of

the obstacle boundary between points a and b. Since this wedge has no search

points between the wedge tip (S) and the obstacle boundary, it can not be further

refined. Also, any path through this wedge would have to end at the obstacle

boundary. Thus, this wedge cannot contain an optimal-cost solution path and

does not need to be created.

Finally, the wedge tree includes some nodes that are described as "No Middle

Sub-wedge". Most often, overlapping left and right wedge boundaries create these

empty middle sub-wedges, although obstacles can also affect the situation. Other

than for these reasons, all nodes have three (or four in reflection cases) child sub-

wedges. Figures 143A and 143B use the convention of listing the left, middle and

* right sub-wedges in that order from left to right.

Figures 144 through 158 show the parent wedge (in the upper left corner of

each figure) and the solution path to the closest unsolved search point within the

parent wedge (in the upper middle inset of each figure). When a reflection sub-

wedge can be created, it is shown as the upper right inset of the figure. The lower

half of each figure shows the three child sub-wedges that are created based on the

solution path. Figures 144 through 158 depict exactly the same homogeneous-cost

region geometry as that enclosed by the bounding box of Figure 142. However,

the regions have been scaled and rotated so that all six insets for each figure can

be placed on a single page. The darkly-shaded polygons depict obstacle areas

while the lightly-shaded areas are high-cost, traversable regions. The unshaded

background is the low-cost, traversable area. Note that only one start-to-goal
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solution path is found for the first problem (as illustrated in Figure 158) and it is

the same path that was used as the initial solution. Also, only one reflection

wedge is formed during the solution process (wedge RW1, Figure 156) and it is

pruned immediately based on the upper bound for the cost of the optimal solution

path.

The second problem features a start point located inside a high-cost region

but, otherwise, has very similar geometry to the first problem. However, the ini-

tial solution does not have optimal cost and the least-cost solution path is found

subsequent to refining a reflection wedge. Figure 159 depicts the Mapi problem,

the initial solution and the resulting bounding box. Table 23 provides wedge

identifications (as did Table 22 for problem 1) and A* evaluations. Figures 160A,

160B and 160C illustrate the wedge search tree for the second demonstration

problem while Figures 161 through 178 detail the solution process.
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TABLE 22 -- ________

PROBLEM 1 WEDGE DESCRIPTIONS

Wedge Boundary A* Evaluations

ED Paths g(W) h(W) f(W)

S-a
W1 0.00 21.51 21.51

S-Z 1

W2 0.00 21.51 21.51
S-a

S-b
W3 0.00 21.51 21.51

S-Z 1

S-z 1
W4 0.00 21.51 21.51

S-c-d-z2

W5 S---25.32 23.20 28.62
S-c-e-f-g-h

S-Z 1
W6 0.00 21.51 21.51

S-z3

S-z3
W7 0.00 31.02 31.02

S-c-d-z2

S-i-j-k-z4
W8 0.00 21.51 21.51

S-Z I
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TABLE 22 (continued)

PROBLEM 1 WEDGE DESCRIPTIONS

Wedge Boundary A* Evaluations

ID Paths g(W) h(W) A(W

S-i-l-m-n-o
W9 14.85 7.28 22.13

S-i-j-k-z4

S-i-j-k-z4
W1O 0.00 26.21 26.21

S-p-z5

S-p-q
Wil 0.00 21.51 21.51

S-z 1

S-p-z5
W12 19.16 7.57 26.73

S-p-q 4

S-z6
W13 0.00 21.51 21.51

S-ZI

S-i-l-m-n-o
W14 7.28 16.70 23.98

S-i-j-k-z4

S-i-l-r-s-z7
W15 11.75 10.70 22.45

S-i-l-m-n-o

S-i-l-r-s-z7
W16 11.75 10.70 22.45

S-i-l-m-n-o
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TABLE 22 (continued)

PROBLEM I WEDGE DESCRIPTIONS

Wedge Boundary A* Evaluations

ID Paths g(W) h(W) f(W)

S-i-l-r-z8
W17 23.79 19.96 43.75

S-i-l-r-s-z7

S-i-l-r-s-z7
W18 11.75' 24.07 35.82

S-i-l-t-z9

S-i-l-t-z10
W19 11.75 10.70 21.45

S-i-l-m-n-o

S-i-l-t-z9
W20 20.48 15.34 35.82

S-i-l-t-z1o

S-i-l-t-z 10
W21 11.75 10.71 22.76

S-i-l-u-v-w

S-i-l-u-v
W22 11.75 13.66 25.41

S-i-l-m-n-o

S-i-l-t-z1O
W23 11.75 12.64 24.39

S-i-l-x-z11

S-i-l-x-zl11

W24 11.75 21.09 32.84
S-i-l-u-v-w
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TABLE 22 (continued)

*PROBLEM 1 WEDGE DESCRIPTIONS

Wedge Boundary A* Evaluations

ID Paths g(W) h(W) f(W)

S-i-y-z-aa-z 12
W25 7.82 17.96 25.24

S-i-j-k-z4

S-i-y-z-aa-z13
W26 23.82 2.55 26.37

S-i-y-z-aa-z12

S-i-l-ab-ac-v-z16
W27 27.16 5.02 32.18

S-i-l-ab-ac-v-ad

S-i-y-z-aa-z13
W28 23.82 2.54 26.36

S-i-y-z-aa-z12

I -S-i-l-ab-ac-z15
RW1 23.93 3.71 27.64

S-i-l-ab-ac-v-z14
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TABLE 23

PROBLEM 2 WEDGE DESCRIPTIONS

Wedge Boundary A* Evaluations

ID Paths g(W) h(W) f(w)

5-Z1
W1 0.00 10.12 10.12

S-a-b

S-a-b
W2 0.00 10.12 10.12

S-Z 1

W3 S-I-0.00 10.12 10.12
S-d-b-z3

S-c-b-g
W4 10.50 7.56 18.06

S-c-b-h

S-a-b ~
W5 0.00 11.07 11.07

S-z4

S-z4
W6 0.00 10.12 10.12

S-z 1

S-Z 1
W7 0.00 10.12 10.12

S-g-i

S-g-j
W8 00 651.

S-d-b-z3

.j1,
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TABLE 23 (continued)

* __POBBLEM22EDEDGDESCRIPTIONS

Wedge Boundary A* Evaluations

ID Paths g(W) h(W) AMW

S-ZI
W9 S-50.00 10.12 10.12

S-z5
W 10 0.00 18.91 18.91

S-g-i

S-c-b-h
Wi1 1.06 10.83 11.69

S-k-z4

S-I-z7
W12 0.00 11.17 11.17

S-k-z4

S-m-n-o
W 13 0.00 16.99 16.99

S-d-b-z3

S-m-n-z8
W14 16.14 2.55 18.69

S-m-n-o

S-p-q
W15 0.00 17.12 17.12

S-d-b-z3

S-r-z9
W 16 0.00 19.49 19.49

S-d-b-z3
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TABLE 23 (continued)

PROBLEM 2 WEDGE DESCRIPTIONS

Wedge Boundary A* Evaluations

ED Paths g(W) h(W) f(w)

S-c-b-g-zS
W17 20.49 5.02 25.52

S-c-b-g-u

S-c-b-g-u
Wi8 10.50 7.56 18.06

S-c-b-h

S-c-b-n-z8
wig 15.52 2.55 18.07

S-c-b-n-v-zl 1

S-c-b-n-v-z 11
W20 10.59 7.47 18.06

S-c-b-h

S-c-b-n-v-z 11
W21 10.59 7.47 18.06

S-c-b-w-z 12

S-c-b-w-zl2
W22 16.60 5.15 21.75

S-c-b-w-z 13

S-c-b-n-v-z 11
W23 10.59 16.27 26.86

S-c-b-z14

S-c-b-z14
W24 10.59 7.47 18.06

S-c-b-z 2
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TABLE 23 (continued)

PROBLEM 2 WEDGE DESCRIPTIONS

Wedge Boundary A* Evaluations

ID Paths g(W) h(W) f(w)

S-c-b-n-z8
W25 15.52 2.55 18.07

S-c-b-n-v-zl11

S-c-x-y-n-z8
W26 14.84 2.55 17.39

S-c-x-y-n-z 15

S-c-x-y-n-z8
W27 14.84 2.55 17.39

S-c-x-y-n-zl5

S-c-e-f
RW1 1.07 10.25 11.32

S-c-b-z2

RW2 S--41.06 10.26 11.32
S-z6

S-c-b-t
RW3 10.50 7.56 18.06

S-c-b-g-z 10

S-c-e-f
RW4 1.07 10.24 11.31

S-c-x-y-n-z8

S-c-x-y-n-z 15
RW5 1.07 14.69 15.76

S-c-b-z2
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